On the Perspectives Opened by Right Angle Crossing Drawings

Angelini, Patrizio and Cittadini, Luca and Di Battista, Giuseppe and Didimo, Walter and Frati, Fabrizio and Kaufmann, Michael and Symvonis, Antonios (2010) On the Perspectives Opened by Right Angle Crossing Drawings. In: Graph Drawing 17th International Symposium, GD 2009, September 22-25, 2009 , pp. 21-32(Official URL: http://dx.doi.org/10.1007/978-3-642-11805-0_5).

Full text not available from this repository.


Right Angle Crossing (RAC) drawings are polyline drawings where each crossing forms four right angles. RAC drawings have been introduced because cognitive experiments provided evidence that increasing the number of crossings does not decrease the readability of the drawing if the edges cross at right angles. We investigate to what extent RAC drawings can help in overcoming the limitations of widely adopted planar graph drawing conventions, providing both positive and negative results. First, we prove that there exist acyclic planar digraphs not admitting any straight-line upward RAC drawing and that the corresponding decision problem is NP-hard. Also, we show digraphs whose straightline upward RAC drawings require exponential area. Second, we study if RAC drawings allow us to draw bounded-degree graphs with lower curve complexity than the one required by more constrained drawing conventions. We prove that every graph with vertex-degree at most 6 (at most 3) admits a RAC drawing with curve complexity 2 (resp. 1) and with quadratic area. Third, we consider a natural non-planar generalization of planar embedded graphs. Here we give bounds for curve complexity and area different from the ones known for planar embeddings.

Item Type: Conference Paper
Additional Information: 10.1007/978-3-642-11805-0_5
Classifications: G Algorithms and Complexity > G.420 Crossings
URI: http://gdea.informatik.uni-koeln.de/id/eprint/1063

Actions (login required)

View Item View Item