Fast Edge-Routing for Large Graphs

Nachmanson, Lev and Dwyer, Tim (2010) Fast Edge-Routing for Large Graphs. In: Graph Drawing 17th International Symposium, GD 2009, September 22-25, 2009, Chicago, IL, USA , pp. 147-158 (Official URL: http://dx.doi.org/10.1007/978-3-642-11805-0_15).

Full text not available from this repository.

Abstract

To produce high quality drawings of graphs with nodes drawn as shapes it is important to find routes for the edges which do not intersect node boundaries. Recent work in this area involves finding shortest paths in a tangent-visibility graph. However, construction of the full tangent-visibility graph is expensive, at least quadratic time in the number of nodes. In this paper we explore two ideas for achieving faster edge routing using approximate shortest-path techniques.

Item Type:Conference Paper
Additional Information:10.1007/978-3-642-11805-0_15
Classifications:P Styles > P.900 Visibility
G Algorithms and Complexity > G.560 Geometry
ID Code:1081

Repository Staff Only: item control page

References

Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Englewood Cliffs (1999)

Bentley, J.L.: Multidimensional divide and conquer. Communications of the ACM 23(4), 214–229 (1980)

Clarkson, K.L.: Approximation algorithms for shortest path motion planning. In: STOC 1987: Nineteenth, New York (May 1987)

Dobkin, D.P., Gansner, E.R., Koutsofios, E., North, S.C.: Implementing a generalpurpose edge router. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 262– 271. Springer, Heidelberg (1997)

Dwyer, T., Marriott, K., Stuckey, P.J.: Fast node overlap removal. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 153–164. Springer, Heidelberg (2006)

Dwyer, T., Marriott, K., Wybrow, M.: Integrating edge routing into force-directed layout. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 8–19. Springer, Heidelberg (2007)

Dwyer, T., Marriott, K., Wybrow, M.: Topology preserving constrained graph layout. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 230–241. Springer, Heidelberg (2009), http://www.csse.monash.edu.au/~ tdwyer/topology.pdf

Freivalds, K.: Curved edge routing. In: Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 126–137. Springer, Heidelberg (2001)

Gansner, E.R., North, S.C.: Improved force-directed layouts. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 364–373. Springer, Heidelberg (1999)

Ghosh, S.K., Mount, D.M.: An output-sensitive algorithm for computing visibility. SIAM Journal on Computing 20(5), 888–910 (1991)

Lauther, U.: Multipole-based force approximation revisited - a simple but fast implementation using a dynamized enclosing-circle-enhanced k-d-tree. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 20–29. Springer, Heidelberg (2007)

Preparata, F.P., Hong, S.J.: Convex hulls of finite sets of points in two and three dimensions. Communications of the ACM 20(2), 87–92 (1977)

Wybrow, M., Marriott, K., Stuckey, P.J.: Incremental connector routing. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 446–457. Springer, Heidelberg (2006)