Drawing Planar Graphs of Bounded Degree with Few Slopes

Keszegh, Balázs and Pach, János and Palvölgyi, Dömötör (2011) Drawing Planar Graphs of Bounded Degree with Few Slopes. In: Graph Drawing 18th International Symposium, GD 2010, September 21-24, 2010 , pp. 293-304(Official URL: http://dx.doi.org/10.1007/978-3-642-18469-7_27).

Full text not available from this repository.


We settle a problem of Dujmovic, Eppstein, Suderman, and Wood by showing that there exists a function f with the property that every planar graph G with maximum degree d admits a drawing with noncrossing straight-line edges, using at most f(d) different slopes. If we allow the edges to be represented by polygonal paths with one bend, then 2d slopes suffice. Allowing two bends per edge, every planar graph with maximum degree d_> 3 can be drawn using segments of at most [d/2] different slopes. There is only one exception: the graph formed by the edges of an octahedron is 4-regular, yet it requires 3 slopes. These bounds cannot be improved.

Item Type: Conference Paper
Additional Information: 10.1007/978-3-642-18469-7_27
Classifications: P Styles > P.999 Others
URI: http://gdea.informatik.uni-koeln.de/id/eprint/1215

Actions (login required)

View Item View Item