## Orthogeodesic Point-Set Embedding of Trees
Di Giacomo, Emilio and Frati, Fabrizio and Fulek, Radoslav and Grilli, Luca and Krug, Marcus
(2012)
Full text not available from this repository. ## AbstractLet S be a set of N grid points in the plane, and let G a graph with n vertices (n ≤ N ). An orthogeodesic point-set embedding of G on S is a drawing of G such that each vertex is drawn as a point of S and each edge is an orthogonal chain with bends on grid points whose length is equal to the Manhattan distance.We study the following problem. Given a family of trees F what is the minimum value f (n) such that every n-vertex tree in F admits an orthogeodesic point-set embedding on every grid-point set of size f (n)? We provide polynomial upper bounds on f (n) for both planar and non-planar orthogeodesic point-set embeddings as well as for the case when edges are required to be L-shaped chains.
Repository Staff Only: item control page References |