Interactive Network Exploration to Derive Insights: Filtering, Clustering, Grouping, and Simplification

Shneiderman, Ben and Dunne, Cody (2013) Interactive Network Exploration to Derive Insights: Filtering, Clustering, Grouping, and Simplification. In: 20th International Symposium, GD 2012, September 19-21, 2012, Redmond, WA, USA , pp. 2-18 (Official URL:

Full text not available from this repository.


The growing importance of network analysis has increased attention on interactive exploration to derive insights and support personal, business, legal, scientific, or national security decisions. Since networks are often complex and cluttered, strategies for effective filtering, clustering, grouping, and simplification are helpful in finding key nodes and links, surprising clusters, important groups, or meaningful patterns. We describe readability metrics and strategies that have been implemented in NodeXL, our free and open source network analysis tool, and show examples from our research. While filtering, clustering, and grouping have been used in many tools, we present several advances on these techniques. We also discuss our recent work on motif simplification, in which common patterns are replaced with compact and meaningful glyphs, thereby improving readability.

Item Type:Conference Paper
Additional Information:10.1007/978-3-642-36763-2_2
Classifications:A General Literature > A.001 Introductory and Survey
S Software and Systems > S.120 Visualization
ID Code:1292

Repository Staff Only: item control page


Ahlberg, C., Williamson, C., Shneiderman, B.: Dynamic queries for information exploration: an implementation and evaluation. In: CHI 1992: Proc. SIGCHI Conference on Human Factors in Computing Systems, pp. 619–626 (1992), doi:10.1145/142750.143054

Bonsignore, E.M., Dunne, C., Rotman, D., Smith, M., Capone, T., Hansen, D.L., Shneiderman, B.: First steps to NetViz Nirvana: Evaluating social network analysis with NodeXL. In: CSE 2009: Proc. 2009 International Conference on Computational Science and Engineering, vol. 4, pp. 332–339 (2009), doi:10.1109/CSE.2009.120

Bruls, M., Huizing, K., Van Wijk, J.J.: Squarified Treemaps. In: Proc. Joint Eurographics and IEEE TCVG Symposium on Visualization, pp. 33–42 (2000)

Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 70, 066111 (2004), doi:10.1103/PhysRevE.70.066111

Davidson, R., Harel, D.: Drawing graphs nicely using simulated annealing. TOG: ACM Transactions on Graphics 15(4), 301–331 (1996), doi:10.1145/234535.234538

Dunne, C., Riche, N.H., Lee, B., Metoyer, R.A., Robertson, G.G.: GraphTrail: Analyzing large multivariate, heterogeneous networks while supporting exploration history. In: CHI 2012: Proc. 2012 International Conference on Human Factors in Computing Systems, pp. 1663–1672 (2012), doi:10.1145/2207676.2208293

Dunne, C., Shneiderman, B.: Improving graph drawing readability by incorporating readability metrics: A software tool for network analysts. Human-Computer Interaction Lab Tech Report HCIL-2009-13, University of Maryland (2009)

Dunne, C., Shneiderman, B.: Motif simplification: Improving network visualization readability with fan and parallel glyphs. Human-Computer Interaction Lab Tech Report HCIL-2012-11, University of Maryland (2012)

Dunne, C., Shneiderman, B., Gove, R., Klavans, J., Dorr, B.: Rapid understanding of scientific paper collections: Integrating statistics, text analytics, and visualization. JASIST: Journal of the American Society for Information Science and Technology (2012)

Eades, P.: A heuristic for graph drawing. CN: Congressus Numerantium 42, 149–160 (1984)

Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. SPE: Software: Practice and Experience 21(11), 1129–1164 (1991), doi:10.1002/spe.4380211102

Gansner, E.R., Hu, Y.: Efficient Node Overlap Removal Using a Proximity Stress Model. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 206–217. Springer, Heidelberg (2009), doi:10.1007/978-3-642-00219-9_20

Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. PNAS: Proc. National Academy of Sciences of the United States of America 99(12), 7821–7826 (2002), doi:10.1073/pnas.122653799

Hachul, S., Jünger, M.: An Experimental Comparison of Fast Algorithms for Drawing General Large Graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 235–250. Springer, Heidelberg (2006), doi:10.1007/11618058_22

Hansen, D., Shneiderman, B., Smith, M.: Analyzing social media networks with NodeXL: Insights from a connected world. Morgan Kaufmann (2011)

Harel, D., Koren, Y.: A fast multi-scale method for drawing large graphs. JGAA: Journal of Graph Algorithms and Applications 6(3), 179–202 (2002)

Harel, D., Koren, Y.: Drawing graphs with non-uniform vertices. In: AVI 2002: Proc. Working Conference on Advanced Visual Interfaces, pp. 157–166 (2002), doi:10.1145/1556262.1556288

Harel, D., Koren, Y.: Graph Drawing by High-Dimensional Embedding. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 207–219. Springer, Heidelberg (2002), doi:10.1007/3-540-36151-0_20

Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hierarchical data. TVCG: IEEE Transactions on Visualization and Computer Graphics 12(5), 741–748 (2006), doi:10.1109/TVCG.2006.147

Huang, W., Hong, S.-H., Eades, P.: Layout Effects on Sociogram Perception. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 262–273. Springer, Heidelberg (2006), doi:10.1007/11618058_24

Lam, H., Bertini, E., Isenberg, P., Plaisant, C., Carpendale, S.: Empirical studies in information visualization: Seven scenarios. TVCG: IEEE Transactions on Visualization and Computer Graphics PP(99), 1 (2011), doi:10.1109/TVCG.2011.279

McGrath, C., Blythe, J., Krackhardt, D.: The effect of spatial arrangement on judgments and errors in interpreting graphs. SN: Social Networks 19(3), 223–242 (1997), doi:10.1016/S0378-8733(96)00299-7

North, C.: Toward measuring visualization insight. CGA: IEEE Computer Graphics and Applications 26(3), 6–9 (2006), doi:10.1109/MCG.2006.70

Perer, A., Shneiderman, B.: Systematic yet flexible discovery: Guiding domain experts through exploratory data analysis. In: IUI 2008: Proc. 13th International Conference on Intelligent User Interfaces, pp. 109–118 (2008), doi:10.1145/1378773.1378788

Perer, A., Shneiderman, B.: Integrating statistics and visualization for exploratory power: From long-term case studies to design guidelines. CGA: IEEE Computer Graphics and Applications 29(3), 39–51 (2009), doi:10.1109/MCG.2009.44

Pupyrev, S., Nachmanson, L., Bereg, S., Holroyd, A.E.: Edge Routing with Ordered Bundles. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 136–147. Springer, Heidelberg (2012), doi:10.1007/978-3-642-25878-7_14

Purchase, H.C.: Metrics for graph drawing aesthetics. JVLC: Journal of Visual Languages & Computing 13, 501–516 (2002), doi:10.1006/jvlc.2002.0232

Rodrigues, E.M., Milic-Frayling, N., Smith, M., Shneiderman, B., Hansen, D.: Group-in-a-Box layout for multi-faceted analysis of communities. In: SocialCom 2011: Proc. 2011 IEEE 3rd International Conference on Social Computing, pp. 354–361 (2011), doi:10.1109/PASSAT/SocialCom.2011.139

Shneiderman, B.: Inventing Discovery Tools: Combining Information Visualization with Data Mining. In: Jantke, K.P., Shinohara, A. (eds.) DS 2001. LNCS (LNAI), vol. 2226, pp. 17–28. Springer, Heidelberg (2001), doi:10.1007/3-540-45650-3_4

Shneiderman, B., Plaisant, C.: Strategies for evaluating information visualization tools: Multi-dimensional in-depth long-term case studies. In: BELIV 2006: Proc. 2006 AVI Workshop on BEyond time and errors: novel evaLuation methods for Information Visualization, pp. 1–7 (2006), doi:10.1145/1168149.1168158

Smith, M., Shneiderman, B., Milic-Frayling, N., Rodrigues, E.M., Barash, V., Dunne, C., Capone, T., Perer, A., Gleave, E.: Analyzing (social media) networks with NodeXL. In: C&T 2009: Proc. Fourth International Conference on Communities and Technologies, pp. 255–264 (2009), doi:10.1145/1556460.1556497

Sugiyama, K.: Graph drawing and applications for software and knowledge engineers, vol. 11. World Scientific Publishing Company (2002)

Wakita, K., Tsurumi, T.: Finding community structure in mega-scale social networks: [extended abstract]. In: WWW 2007: Proc. 16th International Conference on World Wide Web, pp. 1275–1276 (2007), doi:10.1145/1242572.1242805

Wattenberg, M.: Visual exploration of multivariate graphs. In: CHI 2006: Proc. SIGCHI Conference on Human Factors in Computing Systems, pp. 811–819 (2006), doi:10.1145/1124772.1124891

Williamson, C., Shneiderman, B.: The dynamic HomeFinder: evaluating dynamic queries in a real-estate information exploration system. In: SIGIR 1992: Proc. 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 338–346 (1992), doi:10.1145/133160.133216