Implementing a Partitioned 2-Page Book Embedding Testing Algorithm

Angelini, Patrizio and Di Bartolomeo, Marco and Di Battista, Giuseppe (2013) Implementing a Partitioned 2-Page Book Embedding Testing Algorithm. In: 20th International Symposium, GD 2012, September 19-21, 2012, Redmond, WA, USA , pp. 79-89 (Official URL:

Full text not available from this repository.


In a book embedding the vertices of a graph are placed on the "spine" of a "book" and the edges are assigned to "pages" so that edges on the same page do not cross. In the Partitioned 2-page Book Embedding problem egdes are partitioned into two sets $E_1$ and $E_2$, the pages are two, the edges of $E_1$ are assigned to page 1, and the edges of $E_2$ are assigned to page 2. The problem consists of checking if an ordering of the vertices exists along the spine so that the edges of each page do not cross. Hong and Nagamochi [13] give an interesting and complex linear time algorithm for tackling Partitioned 2-page Book Embedding based on SPQR-trees. We show an efficient implementation of this algorithm and show its effectiveness by performing a number of experimental tests. Because of the relationships [13] between Partitioned 2-page Book Embedding and clustered planarity we yield as a side effect an implementation of a clustered planarity testing where the graph has exactly two clusters.

Item Type:Conference Paper
Additional Information:10.1007/978-3-642-36763-2_8
Classifications:G Algorithms and Complexity > G.490 Embeddings
G Algorithms and Complexity > G.770 Planarity Testing
P Styles > P.999 Others
ID Code:1299

Repository Staff Only: item control page


Angelini, P., Di Bartolomeo, M., Di Battista, G.: Implementing a partitioned 2-page book embedding testing algorithm. CoRR, arXiv:1209.0598v1 (2012)

Biedl, T.: Drawing planar partitions III: Two Constrained Embedding Problems. Tech. Report RRR 13-98, Rutcor Research Report (1998)

Biedl, T.C., Kaufmann, M., Mutzel, P.: Drawing Planar Partitions II: HH-Drawings. In: Hromkovič, J., Sýkora, O. (eds.) WG 1998. LNCS, vol. 1517, pp. 124–136. Springer, Heidelberg (1998)

Buss, J.F., Shor, P.W.: On the pagenumber of planar graphs. In: STOC 1984, pp. 98–100. ACM (1984)

Chimani, M., Gutwenger, C., Jünger, M., Klau, G., Klein, K., Mutzel, P.: Handbook of Graph Drawing and Visualization: The Open Graph Drawing Framework. CRC-Press (2012)

Cortese, P.F., Di Battista, G.: Clustered planarity. In: SoCG 2005, pp. 32–34 (2005)

Di Battista, G., Didimo, W.: Handbook of Graph Drawing and Visualization: GDToolkit. CRC-Press (2012)

Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15(4), 302–318 (1996)

Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25, 956–997 (1996)

Feng, Q.W., Cohen, R.F., Eades, P.: Planarity for Clustered Graphs. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995)

Frati, F., Fulek, R., Ruiz-Vargas, A.J.: On the Page Number of Upward Planar Directed Acyclic Graphs. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 391–402. Springer, Heidelberg (2012)

Gutwenger, C., Mutzel, P.: A Linear Time Implementation of SPQR-Trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)

ong, S., Nagamochi, H.: Two-page book embedding and clustered graph planarity. TR [2009-004], Dept. of Applied Mathematics and Physics, University of Kyoto, Japan (2009)

Ollmann, L.T.: On the book thicknesses of various graphs. Cong. Num, vol. VIII, p. 459 (1973)

Wood, D.R.: Degree constrained book embeddings. J. of Algorithms 45(2), 144–154 (2002)

Yannakakis, M.: Embedding planar graphs in four pages. JCSS 38(1), 36–67 (1989)