Upward Planarity Testing via SAT

Chimani, Markus and Zeranski, Robert (2013) Upward Planarity Testing via SAT. In: 20th International Symposium, GD 2012, September 19-21, 2012, Redmond, WA, USA , pp. 248-259 (Official URL: http://link.springer.com/chapter/10.1007/978-3-642-36763-2_22).

Full text not available from this repository.


A directed acyclic graph is upward planar if it allows a drawing without edge crossings where all edges are drawn as curves with monotonously increasing y-coordinates. The problem to decide whether a graph is upward planar or not is NP-complete in general, and while special graph classes are polynomial time solvable, there is not much known about solving the problem for general graphs in practice. The only attempt so far was a branch-and-bound algorithm over the graph’s triconnectivity structure which was able to solve sparse graphs. In this paper, we propose a fundamentally different approach, based on the seemingly novel concept of ordered embeddings. We carefully model the problem as a special SAT instance, i.e., a logic formula for which we check satisfiability. Solving these SAT instances allows us to decide upward planarity for arbitrary graphs. We then show experimentally that this approach seems to dominate the known alternative approaches and is able to solve traditionally used graph drawing benchmarks effectively.

Item Type:Conference Paper
Additional Information:10.1007/978-3-642-36763-2_22
Classifications:G Algorithms and Complexity > G.770 Planarity Testing
P Styles > P.840 Upward
ID Code:1314

Repository Staff Only: item control page


Bachmaier, C., Brunner, W., Gleißner, A.: Grid sifting: Leveling and crossing reduction. Tech. Rep. MIP-1103, University of Passau (2011)

Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of triconnected digraphs. Algorithmica 12(6), 476–497 (1994)

Bertolazzi, P., Di Battista, G., Didimo, W.: Quasi-upward planarity. Algorithmica 32(3), 474–506 (2002)

Binucci, C., Didimo, W.: Upward Planarity Testing of Embedded Mixed Graphs. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 427–432. Springer, Heidelberg (2012)

Binucci, C., Didimo, W., Patrignani, M.: Upward and quasi-upward planarity testing of embedded mixed graphs. Tech. Rep. RT-001-12, University of Perugia, Department of Electronic and Information Engineering (2012)

Chan, H.: A Parameterized Algorithm for Upward Planarity Testing. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 157–168. Springer, Heidelberg (2004)

Chimani, M., Gutwenger, C., Mutzel, P., Wong, H.M.: Layer-free upward crossing minimization. ACM Journal of Experimental Algorithmics 15 (2010)

Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River (1999)

Di Battista, G., Garg, A., Liotta, G., Parise, A., Tamassia, R., Tassinari, E., Vargiu, F., Vismara, L.: Drawing directed acyclic graphs: An experimental study. International Journal of Computational Geometry and Appl. 10(6), 623–648 (2000)

Di Battista, G., Liu, W.P., Rival, I.: Bipartite graphs, upward drawings, and planarity. Information Processing Letters 36(6), 317–322 (1990)

Didimo, W., Giordano, F., Liotta, G.: Upward spirality and upward planarity testing. SIAM Journal on Discrete Mathematics 23(4), 1842–1899

Eiglsperger, M., Kaufmann, M.: An Approach for Mixed Upward Planarization. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 352–364. Springer, Heidelberg (2001)

Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM Journal on Computing 31(2), 601–625 (2002)

Gutwenger, C., Klein, K., Mutzel, P.: Planarity testing and optimal edge insertion with embedding constraints. J. Graph Algorithms Appl. 12(1), 73–95 (2008)

Healy, P., Lynch, K.: Fixed-Parameter Tractable Algorithms for Testing Upward Planarity. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 199–208. Springer, Heidelberg (2005)

Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974)

Hutton, M.D., Lubiw, A.: Upward planar drawing of single source acyclic digraphs. In: Proc. of SODA 1991, pp. 203–211 (1991)

Papakostas, A.: Upward Planarity Testing of Outerplanar Dags (Extended Abstract). In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 298–306. Springer, Heidelberg (1995)

Welzl, E., Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An experimental comparison of four graph drawing algorithms. Computational Geometry 7, 303–325 (1997)