Planar Preprocessing for Spring Embedders

Fowler, J. Joseph and Kobourov, Stephen G. (2013) Planar Preprocessing for Spring Embedders. In: 20th International Symposium, GD 2012, September 19-21, 2012, Redmond, WA, USA , pp. 388-399 (Official URL: http://link.springer.com/chapter/10.1007/978-3-642-36763-2_35).

Full text not available from this repository.

Abstract

Spring embedders are conceptually simple and produce straight-line drawings with an undeniable aesthetic appeal, which explains their prevalence when it comes to automated graph drawing. However, when drawing planar graphs, spring embedders often produce non-plane drawings, as edge crossings do not factor into the objective function being minimized. On the other hand, there are fairly straight-forward algorithms for creating plane straight-line drawings for planar graphs, but the resulting layouts generally are not aesthetically pleasing, as vertices are often grouped in small regions and edges lengths can vary dramatically. It is known that the initial layout influences the output of a spring embedder, and yet a random layout is nearly always the default. We study the effect of using various plane initial drawings as an inputs to a spring embedder, measuring the percent improvement in reducing crossings and in increasing node separation, edge length uniformity, and angular resolution.

Item Type:Conference Paper
Additional Information:10.1007/978-3-642-36763-2_35
Classifications:M Methods > M.400 Force-directed / Energy-based
M Methods > M.600 Planar
P Styles > P.720 Straight-line
ID Code:1327

Repository Staff Only: item control page

References

Bertault, F.: A force-directed algorithm that preserves edge-crossing properties. Information Processing Letters 74(1-2), 7–13 (2000)

Brandenburg, F.J., Himsolt, M., Rohrer, C.: An Experimental Comparison of Force-Directed and Randomized Graph Drawing Algorithms. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 76–87. Springer, Heidelberg (1996)

Brandes, U., Pich, C.: More Flexible Radial Layout. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 107–118. Springer, Heidelberg (2010), http://dx.doi.org/10.1007/978-3-642-11805-0_12

Brandes, U., Pich, C.: An Experimental Study on Distance-Based Graph Drawing (Extended Abstract). In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 218–229. Springer, Heidelberg (2009)

Chimani, M., Gutwenger, C., Jünger, M., Klau, G., Klein, K., Mutzel, P.: The open graph drawing framework. In: Handbook of Graph Drawing and Visualization

Didimo, W., Liotta, G., Romeo, S.A.: Topology-Driven Force-Directed Algorithms. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 165–176. Springer, Heidelberg (2011)

Dwyer, T., Marriott, K., Wybrow, M.: Topology Preserving Constrained Graph Layout. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 230–241. Springer, Heidelberg (2009)

Eades, P.: A heuristic for graph drawing. Cong. Numerantium 42, 149–160 (1984)

Fowler, J., Kobourov, S.G.: Planar preprocessing for spring embedders. Technical Report TR12-03, Dept. of Computer Science, Univ. of Arizona (2012)

de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)

Fruchterman, T., Reingold, E.: Graph drawing by force-directed placement. Software – Practice and Experience 21(11), 1129–1164 (1991)

Fusy, É.: Uniform random sampling of planar graphs in linear time. Random Structures and Algorithms 35(4), 464–522 (2009)

van Ham, F., Wattenberg, M.: Centrality based visualization of small world graphs. Comput. Graph. Forum 27(3), 975–982 (2008)

Harel, D., Sardas, M.: Randomized graph drawing with heavy-duty preprocessing. Journal of Visual Languages and Computing 6(3), 233–253 (1995)

Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Information Processing Letters 31, 7–15 (1989)

Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16, 4–32 (1996)

Prüfer, H.: Neuer Beweis eines Satzes über Permutationen. Archiv für Mathematik und Physik, pp. 142–144 (1918)

Purchase, H.: Metrics for graph drawing aesthetics. Journal of Visual Languages & Computing 13(5), 501–516 (2002)

Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the 1st ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 138–148 (1990)

Tunkelang, D.: JIGGLE: Java Interactive Graph Layout Environment. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 413–422. Springer, Heidelberg (1999)