StreamEB: Stream Edge Bundling

Nguyen, Quan and Eades, Peter and Hong, Seok-Hee (2013) StreamEB: Stream Edge Bundling. In: 20th International Symposium, GD 2012, September 19-21, 2012, Redmond, WA, USA , pp. 400-413 (Official URL: http://link.springer.com/chapter/10.1007/978-3-642-36763-2_36).

Full text not available from this repository.

Abstract

Graph streams have been studied extensively, such as for data mining, while fairly limitedly for visualizations. Recently, edge bundling promises to reduce visual clutter in large graph visualizations, though mainly focusing on static graphs. This paper presents a new framework, namely StreamEB, for edge bundling of graph streams, which integrates temporal, neighbourhood, data-driven and spatial compatibility for edges. Amongst these metrics, temporal and neighbourhood compatibility are introduced for the first time. We then present force-directed and tree-based methods for stream edge bundling. The effectiveness of our framework is then demonstrated using US flights data and Thompson-Reuters stock data.

Item Type:Conference Paper
Additional Information:10.1007/978-3-642-36763-2_36
Classifications:P Styles > P.300 Curved
S Software and Systems > S.120 Visualization
ID Code:1328

Repository Staff Only: item control page

References

Neo4j, the graph database (2011), http://neo4j.org/

Thomson Reuters (2011), http://thomsonreuters.com/

US Flights (2011), http://stat-computing.org/dataexpo/2009/the-data.html

Abello, J., Finocchi, I., Korn, J.L.: Visualization of state transition graphs graph sketches. In: InfoVis, p. 67 (2001)

Aggarwal, C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams. In: VLDB, vol. 29, pp. 81–92. VLDB Endowment (2003)

Aggarwal, C., Wang, H.: Managing and Mining Graph Data, vol. 40. Springer (2010)

Ahmed, A., Dwyer, T., Forster, M., Fu, X., Ho, J., Hong, S.-H., Koschützki, D., Murray, C., Nikolov, N.S., Taib, R., Tarassov, A., Xu, K.: GEOMI: GEOmetry for Maximum Insight. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 468–479. Springer, Heidelberg (2006)

Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations and query execution. VLDB 15(2), 121–142 (2006)

Binucci, C., Brandes, U., Di Battista, G., Didimo, W., Gaertler, M., Palladino, P., Patrignani, M., Symvonis, A., Zweig, K.: Drawing Trees in a Streaming Model. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 292–303. Springer, Heidelberg (2010)

Boyandin, I., Bertini, E., Lalanne, D.: Using flow maps to explore migrations over time. In: Geospatial Visual Analytics Workshop, vol. 2 (2010)

Brandes, U., Mader, M.: A Quantitative Comparison of Stress-Minimization Approaches for Offline Dynamic Graph Drawing. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 99–110. Springer, Heidelberg (2012)

Chin, G., Singhal, M., Nakamura, G., Gurumoorthi, V., Freeman-Cadoret, N.: Visual analysis of dynamic data streams. InfoVis 8(3), 212 (2009)

Cui, W., Zhou, H., Qu, H., Wong, P., Li, X.: Geometry-based edge clustering for graph visualization. TVCG, 1277–1284 (2008)

De Pauw, W., Andrade, H.: Visualizing large-scale streaming applications. InfoVis 8(2), 87 (2009)

Eades, P.A.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160 (1984)

Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in the streaming model: the value of space. In: SODA, pp. 745–754 (2005)

Gansner, E., Hu, Y., North, S., Scheidegger, C.: Multilevel agglomerative edge bundling for visualizing large graphs. In: IEEE PacificVis, pp. 187–194 (2011)

Gansner, E.R., Koren, Y.: Improved Circular Layouts. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 386–398. Springer, Heidelberg (2007)

Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. TVCG, 741–748 (2006)

Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization. Computer Graphics Forum 28(3), 983–990 (2009)

Kienreich, W., Seifert, C.: An application of edge bundling techniques to the visualization of media analysis results. In: InfoVis, pp. 375–380. IEEE (2010)

Lambert, A., Bourqui, R., Auber, D.: Winding Roads: Routing edges into bundles. Computer Graphics Forum 29, 853–862 (2010)

Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. Journal of Visual Languages and Computing 6(2), 183–210 (1995)

Nguyen, Q., Hong, S.-H., Eades, P.: TGI-EB: A New Framework for Edge Bundling Integrating Topology, Geometry and Importance. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 123–135. Springer, Heidelberg (2012)

Nguyen, Q., Eades, P., Hong, S.H.: StreamEB: Stream Edge Bundling. Tech. Rep. TR-689, University of Sydney (July 2012)

O’Callaghan, L., Mishra, N., Meyerson, A., Guha, S., Motwani, R.: Streaming-data algorithms for high-quality clustering. In: ICDE, pp. 685–694. IEEE (2002)

Quigley, A., Eades, P.: FADE: Graph Drawing, Clustering, and Visual Abstraction. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 197–210. Springer, Heidelberg (2001)

Selassie, D., Heller, B., Heer, J.: Divided edge bundling for directional network data. TVCG 17(12), 2354–2363 (2011)

Shi, L., Wang, C., Wen, Z.: Dynamic network visualization in 1.5D. In: PacificVis, pp. 179–186 (2011)

Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.: Graphscope: parameter-free mining of large time-evolving graphs. In: SIGKDD, pp. 687–696. ACM (2007)

Zhou, H., Yuan, X., Cui, W., Qu, H., Chen, B.: Energy-based hierarchical edge clustering of graphs. In: IEEE PacificVis, pp. 55–61. IEEE (2008)