Recognizing Outer 1-Planar Graphs in Linear Time

Auer, Christopher and Bachmaier, Christian and Brandenburg, Franz J. and Gleißner, Andreas and Hanauer, Kathrin and Neuwirth, Daniel and Reislhuber, Josef (2013) Recognizing Outer 1-Planar Graphs in Linear Time. In: 21st International Symposium, GD 2013, September 23-25, 2013, Bordeaux, France , pp. 107-118 (Official URL: http://dx.doi.org/10.1007/978-3-319-03841-4_10).

Full text not available from this repository.

Abstract

A graph is outer 1-planar (o1p) if it can be drawn in the plane such that all vertices are on the outer face and each edge is crossed at most once. o1p graphs generalize outerplanar graphs, which can be recognized in linear time and specialize 1-planar graphs, whose recognition is NP -hard. Our main result is a linear-time algorithm that first tests whether a graph G is o1p, and then computes an embedding. Moreover, the algorithm can augment G to a maximal o1p graph. If G is not o1p, then it includes one of six minors (see Fig. 3), which are also detected by the recognition algorithm. Hence, the algorithm returns a positive or negative witness for o1p.

Item Type:Conference Paper
Classifications:G Algorithms and Complexity > G.420 Crossings
G Algorithms and Complexity > G.490 Embeddings
G Algorithms and Complexity > G.770 Planarity Testing
ID Code:1365

Repository Staff Only: item control page

References

Alam, M.J., Brandenburg, F.J., Kobourov, S.G.: Straight-line drawings of 3-connected 1-planar graphs. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 83–94. Springer, Heidelberg (2013)

Auer, C., Brandenburg, F.J., Gleißner, A., Reislhuber, J.: On 1-planar graphs with rotation systems. Tech. Rep. MIP 1207, University of Passau (2012)

Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 97–108. Springer, Heidelberg (2013)

Brandenburg, F.J., Eppstein, D., Gleißner, A., Goodrich, M.T., Hanauer, K., Reislhuber, J.: On the density of maximal 1-planar graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 327–338. Springer, Heidelberg (2013)

Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number and 1-planarity hard. Tech. Rep. arXiv:1203.5944 (cs.CG), Computing Research Repository (CoRR) (March 2012)

Dehkordi, H.R., Eades, P.: Every outer-1-plane graph has a right angle crossing drawing. Internat. J. Comput. Geom. Appl. 22(6), 543–558 (2012)

Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996)

Eades, P., Hong, S.H., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: Testing maximal 1-planarity of graphs with a rotation system in linear time. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 339–345. Springer, Heidelberg (2013)

Eades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 148–153. Springer, Heidelberg (2011)

Eggleton, R.B.: Rectilinear drawings of graphs. Utilitas Math. 29, 149–172 (1986)

Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)

Hliněný, P.: Crossing number is hard for cubic graphs. J. Combin. Theory, Ser. B 96(4), 455–471 (2006)

Hong, S.-H., Eades, P., Liotta, G., Poon, S.-H.: Fáry’s theorem for 1-planar graphs. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 335–346. Springer, Heidelberg (2012)

Hong, S.H., Eades, P., Naoki, K., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time algorithm for testing outer-1-planarity. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 71–82. Springer, Heidelberg (2013)

Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersion and hardness of 1-planarity testing. J. Graph Theor. 72, 30–71 (2013)

Mitchell, S.L.: Linear algorithms to recognize outerplanar and maximal outerplanar graphs. Inform. Process. Lett. 9(5), 229–232 (1979)

Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abh. aus dem Math. Seminar der Univ. Hamburg 29, 107–117 (1965)

Thomassen, C.: Rectilinear drawings of graphs. J. Graph Theor. 12(3), 335–341 (1988)