Simultaneous Embedding: Edge Orderings, Relative Positions, Cutvertices

Bläsius, Thomas and Karrer, Annette and Rutter, Ignaz (2013) Simultaneous Embedding: Edge Orderings, Relative Positions, Cutvertices. In: 21st International Symposium, GD 2013, September 23-25, 2013, Bordeaux, France , pp. 220-231 (Official URL: http://dx.doi.org/10.1007/978-3-319-03841-4_20).

Full text not available from this repository.

Abstract

A simultaneous embedding of two graphs G\textcircled{1} and G\textcircled{2} with common graph G=G\textcircled{1}∩G\textcircled{2} is a pair of planar drawings of G\textcircled{1} and G\textcircled{2} that coincide on G. It is an open question whether there is a polynomial-time algorithm that decides whether two graphs admit a simultaneous embedding (problem Sefe). In this paper, we present two results. First, a set of three linear-time preprocessing algorithms that remove certain substructures from a given Sefe instance, producing a set of equivalent Sefe instances without such substructures. The structures we can remove are (1) cutvertices of the union graph G\textcircled{1}∪G\textcircled{2} , (2) cutvertices that are simultaneously a cutvertex in G\textcircled{1} and G\textcircled{2} and that have degree at most 3 in G, and (3) connected components of G that are biconnected but not a cycle. Second, we give an O(n 2)-time algorithm for Sefe where, for each pole u of a P-node μ (of a block) of the input graphs, at most three virtual edges of μ contain common edges incident to u. All algorithms extend to the sunflower case.

Item Type:Conference Paper
Classifications:G Algorithms and Complexity > G.490 Embeddings
M Methods > M.600 Planar
P Styles > P.999 Others
ID Code:1377

Repository Staff Only: item control page

References

Angelini, P., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Testing the simultaneous embeddability of two graphs whose intersection is a biconnected or a connected graph. Journal of Discrete Algorithms 14, 150–172 (2012)

Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous Embedding of Planar Graphs. In: Handbook of Graph Drawing and Visualization, pp. 349–381. Chapman and Hall/CRC (2013)

Bläsius, T., Rutter, I.: Disconnectivity and relative positions in simultaneous embeddings. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 31–42. Springer, Heidelberg (2013)

Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems. In: Proc. 24th ACM-SIAM Sympos. Discrete Algorithm, SODA 2013, pp. 1030–1043. ACM (2013)

Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences 13, 335–379 (1976)

Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15(4), 302–318 (1996)

Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Simultaneous graph embeddings with fixed edges. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 325–335. Springer, Heidelberg (2006)

Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)

Haeupler, B., Jampani, K., Lubiw, A.: Testing simultaneous planarity when the common graph is 2-connected. J. Graph Algorithms Appl. 17(3), 147–171 (2013)

Jünger, M., Schulz, M.: Intersection graphs in simultaneous embedding with fixed edges. Journal of Graph Algorithms and Applications 13(2), 205–218 (2009)

Schaefer, M.: Toward a theory of planarity: Hanani-tutte and planarity variants. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 162–173. Springer, Heidelberg (2013)

Wiedemann, D.: Solving sparse linear equations over finite fields. IEEE Transactions on Information Theory 32(1), 54–62 (1986)