Optimal Algorithms to Embed Trees in a Point Set

Bose, Prosenjit and McAllister, Michael and Snoeyink, Jack (1996) Optimal Algorithms to Embed Trees in a Point Set. In: Symposium on Graph Drawing, GD 1995, September 20-22, 1995, Passau, Germany , pp. 64-75 (Official URL: http://dx.doi.org/10.1007/BFb0021791).

Full text not available from this repository.

Abstract

We present optimal \Theta(n log n) time algorithms to solve two tree embedding problems whose solution previously took quadratic time or more: rooted-tree embeddings and degree-constrained embeddings. In the rooted-tree embedding problem we are given a rooted-tree T with n nodes and a set of n points P with one designated point p and are asked to find a straight-line embedding of T into P with the root at point p. In the degree-constrained embedding problem we are given a set of n points P where each point is assigned a positive degree and the degrees sum to 2n-2 and are asked to embed a tree in P using straight lines that respects the degrees assigned to each point of P. In both problems, the points of P must be in general position and the embeddings have no crossing edges.

Item Type:Conference Paper
Additional Information:10.1007/BFb0021791
Classifications:P Styles > P.720 Straight-line
G Algorithms and Complexity > G.490 Embeddings
M Methods > M.900 Tree
ID Code:138

Repository Staff Only: item control page

References

P. Bose, G. Di Battista, W. Lenhart, and G. Liotta. Proximity constraints and representable trees. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD '94), volume 894 of Lecture Notes in Computer Science, pages 340-351. Springer-Verlag, 1995.

P. Bose, W. Lenhart, and G. Liotta. Characterizing proximity trees. Report TR-SOCS-93.9, School of Comp. Sci., McGill Univ., Montreal, Quebec, Canada, 1993.

B. Chazelle. On the convex layers of a planar set. IEEE Transactions on Information Theory, IT-31:509-517, 1985.

P. Crescenzi and A. Piperno. Optimal-area upward drawings of AVL trees. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD '94), volume 894 of Lecture Notes in Computer Science, pages 307-317. Springer-Verlag, 1995.

G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing graphs: an annotated bibliography. Comput. Geom. Theory Appl., 4:235-282, 1994.

P. Eades and S. Whitesides. The realization problem for Euclidean minimum spanning trees is NP-hard. In Proc. 10th Annu. ACM Sympos. Comput. Geom., pages 49-56, 1994.

J. Hershberger and S. Suri. Applications of a semi-dynamic convex hull algorithm. BIT, 32:249-267, 1992.

Y. Ikebe, M. Perles, A. Tamura, and S. Tokunaga. The rooted tree embedding problem into points in the plane. Discrete and Computational Geometry, 11:51-63, 1994

G. Kant, G. Liotta, R. Tamassia, and I. Tollis. Area requirement of visibility representations of trees. In Proc. 5th Canad. Conf. Comput. Geom., pages 192-197, Waterloo, Canada, 1993.

D. E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming. Addison-Wesley, second edition, 1973.

J. Manning and M. J. Atallah. Fast detection and display of symmetry in trees. Congressus Numerantium, 64:159-169, 1988.

A. Melkman. On-line construction of the convex hull of a simple polyline. Information Processing Letters, 25:11-12, 1987.

C. Monma and S. Suri. Transitions in geometric minimum spanning trees. In Proc. 7th Annu. ACM Sympos. Comput. Geom., pages 239-249, 1991.

A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, 1992.

J. O'Rourke. Computational Geometry in C. Cambridge Univesity Press, 1994.

M. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. Jounal of Computer and System Sciences, 23:166-204, 1981.

J. Pach and J. Töröcsik. Layout of rooted trees. In W. T. Trotter, editor, Planar Graphs, volume 9 of DIMACS Series, pages 131-137. American Mathematical Society, 1993.

W. Paul and J. Simon. Decision trees and random access machines. Logic and Algorithmics, Monograph 30, L'Enseignement Mathématique, 1987.

F. P. Preparata and M. I. Shamos. Computational Geometry: an Introduction. Springer-Verlag, New York, NY, 1985.

A. Tamura and Y. Tamura. Degree constrained tree embedding into points in the plane. Information Processing Letters, 44:211-1214, 1992.