Stub Bundling and Confluent Spirals for Geographic Networks

Nocaj, Arlind and Brandes, Ulrik (2013) Stub Bundling and Confluent Spirals for Geographic Networks. In: 21st International Symposium, GD 2013, September 23-25, 2013, Bordeaux, France , pp. 388-399 (Official URL: http://dx.doi.org/10.1007/978-3-319-03841-4_34).

Full text not available from this repository.

Abstract

Edge bundling is a technique to reduce clutter by routing parts of several edges along a shared path. In particular, it is used for visualization of geographic networks where vertices have fixed coordinates. Two main drawbacks of the common approach of bundling the interior of edges are that (i) tangents at endpoints deviate from the line connecting the two endpoints in an uncontrolled way and (ii) there is ambiguity as to which pairs of vertices are actually connected. Both severely reduce the interpretability of geographic network visualizations. We therefore propose methods that bundle edges at their ends rather than their interior. This way, tangents at vertices point in the general direction of all neighbors of edges in the bundle, and ambiguity is avoided altogether. For undirected graphs our approach yields curves with no more than one turning point. For directed graphs we introduce a new drawing style, confluent spiral drawings, in which the direction of edges can be inferred from monotonically increasing curvature along each spiral segment.

Item Type:Conference Paper
Classifications:G Algorithms and Complexity > G.560 Geometry
P Styles > P.300 Curved
ID Code:1391

Repository Staff Only: item control page

References

Baumgarten, C., Farin, G.: Approximation of logarithmic spirals. Computer Aided Geometric Design 14(6), 515–532 (1997)

Benkert, M., Nöllenburg, M., Uno, T., Wolff, A.: Minimizing intra-edge crossings in wiring diagrams and public transportation maps. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 270–281. Springer, Heidelberg (2007)

Brandes, U., Shubina, G., Tamassia, R.: Improving angular resolution in visualizations of geographic networks. In: de Leeuw, W.C., van Liere, R. (eds.) VisSym 2000, pp. 23–32. Springer (2000)

Brandes, U., Wagner, D.: Using graph layout to visualize train interconnection data. Journal of Graph Algorithms and Applications 4(3), 135–155 (2000)

Buchin, K., Speckmann, B., Verbeek, K.: Angle-restricted steiner arborescences for flow map layout. In: Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 250–259. Springer, Heidelberg (2011)

Cui, W., Zhou, H., Qu, H., Wong, P.C., Li, X.: Geometry-based edge clustering for graph visualization. IEEE Trans. on Visualization and Computer Graphics 14(6), 1277–1284 (2008)

Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings: Visualizing non-planar diagrams in a planar way. Journal of Graph Algorithms and Applications 9(1), 31–52 (2005)

Ersoy, O., Hurter, C., Paulovich, F.V., Cantareiro, G., Telea, A.: Skeleton-based edge bundling for graph visualization. IEEE Trans. on Visualization and Computer Graphics 17(12), 2364–2373 (2011)

Gansner, E.R., Hu, Y., North, S.C., Scheidegger, C.E.: Multilevel agglomerative edge bundling for visualizing large graphs. In: Proc. of the IEEE Pacific Visualization Symposium 2011, pp. 187–194. IEEE (2011)

Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD 1984, pp. 47–57. ACM Press (1984)

Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Trans. on Visualization and Computer Graphics 12, 741–748 (2006)

Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization. Computer Graphics Forum 28(3), 983–990 (2009)

Hurter, C., Ersoy, O., Telea, A.: Smooth bundling of large streaming and sequence graphs. In: Proc. of the IEEE Pacific Visualization Symposium. IEEE (to appear, 2013)

Hurter, C., Ersoy, O., Telea, A.: Graph bundling by kernel density estimation. Computer Graphics Forum 31(3pt. 1), 865–874 (2012)

Lambert, A., Bourqui, R., Auber, D.: 3d edge bundling for geographical data visualization. IEEE Trans. on Visualization and Computer Graphics, 329–335 (2010)

Lambert, A., Bourqui, R., Auber, D.: Winding roads: Routing edges into bundles. Computer Graphics Forum 29(3), 853–862 (2010)

Newberry, F.J.: Edge concentration: A method for clustering directed graphs. SIGSOFT Software Engineering Notes 14(7), 76–85 (1989)

Nguyen, Q.H., Eades, P., Hong, S.: On the faithfulness of graph visualizations. In: Proc. of the IEEE Pacific Visualization Symposium. IEEE (to appear, 2013)

Nguyen, Q., Hong, S.-H., Eades, P.: TGI-EB: A new framework for edge bundling integrating topology, geometry and importance. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 123–135. Springer, Heidelberg (2011)

Peng, D., Lu, N., Chen, W., Peng, Q.: Sideknot: Revealing relation patterns for graph visualization. In: Proc. of the IEEE Pacific Visualization Symposium 2012, pp. 65–72. IEEE (2012)

Phan, D., Xiao, L., Yeh, R., Hanrahan, P., Winograd, T.: Flow map layout. In: Proc. of IEEE Symposium of Information Visualization 2005, p. 29. IEEE (2005)

Pupyrev, S., Nachmanson, L., Bereg, S., Holroyd, A.E.: Edge routing with ordered bundles. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 136–147. Springer, Heidelberg (2011)

Pupyrev, S., Nachmanson, L., Kaufmann, M.: Improving layered graph layouts with edge bundling. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 329–340. Springer, Heidelberg (2011)

Selassie, D., Heller, B., Heer, J.: Divided edge bundling for directional network data. IEEE Trans. on Visualization and Computer Graphics 17 (2011)

Telea, A., Ersoy, O.: Image-based edge bundles: Simplified visualization of large graphs. Computer Graphics Forum 29(3), 843–852 (2010)

Verbeek, K., Buchin, K., Speckmann, B.: Flow map layout via spiral trees. IEEE Trans. on Visualization and Computer Graphics 17(12), 2536–2544 (2011)

Zinsmaier, M., Brandes, U., Deussen, O., Strobelt, H.: Interactive level-of-detail rendering of large graphs. IEEE Trans. on Visualization and Computer Graphics 18(12), 2486–2495 (2012)