Balanced Circle Packings for Planar Graphs

Alam, Muhammed Jawaherul and Eppstein, David and Goodrich, Michael T. and Kobourov, Stephen G. and Pupyrev, Sergey (2014) Balanced Circle Packings for Planar Graphs. In: Graph Drawing 22nd International Symposium, GD 2014, September 24-26, 2014, Würzburg, Germany , pp. 125-136 (Official URL: http://dx.doi.org/10.1007/978-3-662-45803-7_11).

Full text not available from this repository.

Abstract

We study balanced circle packings and circle-contact representations for planar graphs, where the ratio of the largest circle’s diameter to the smallest circle’s diameter is polynomial in the number of circles. We provide a number of positive and negative results for the existence of such balanced configurations.

Item Type:Conference Paper
Additional Information:10.1007/978-3-662-45803-7_11
Classifications:G Algorithms and Complexity > G.560 Geometry
P Styles > P.999 Others
Z Theory > Z.500 Representations
ID Code:1427

Repository Staff Only: item control page

References

Alam, J., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Pupyrev, S.: Balanced circle packings for planar graphs. Arxiv report arxiv.org/abs/1408.4902 (2014)

Bannister, M.J., Devanny, W.E., Eppstein, D., Goodrich, M.T.: The Galois complexity of graph drawing: Why numerical solutions are ubiquitous for force-directed, spectral, and circle packing drawings. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 149–161. Springer, Heidelberg (2014)

Bern, M., Eppstein, D.: Optimal Möbius transformations for information visualization and meshing. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 14–25. Springer, Heidelberg (2001)

Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Comput. Geom. Th. Appl. 9(1-2), 3–24 (1998)

Brightwell, G., Scheinerman, E.: Representations of planar graphs. SIAM J. Discrete Math. 6(2), 214–229 (1993)

Chen, G., Yu, X.: Long cycles in 3-connected graphs. J. Comb. Theory B 86(1), 80–99 (2002)

Collins, C.R., Stephenson, K.: A circle packing algorithm. Comput. Geom. Th. Appl. 25(3), 233–256 (2003)

Dolev, D., Leighton, T., Trickey, H.: Planar embedding of planar graphs. Advances in Computing Research 2, 147–161 (1984)

Duncan, C.A., Gansner, E.R., Hu, Y.F., Kaufmann, M., Kobourov, S.G.: Optimal polygonal representation of planar graphs. Algorithmica 63(3), 672–691 (2012)

Eppstein, D.: Planar Lombardi drawings for subcubic graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 126–137. Springer, Heidelberg (2013)

Eppstein, D., Holten, D., Löffler, M., Nöllenburg, M., Speckmann, B., Verbeek, K.: Strict confluent drawing. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 352–363. Springer, Heidelberg (2013)

de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: On triangle contact graphs. Combinatorics, Probability & Computing 3(2), 233–246 (1994)

Gilbert, E.N., Moore, E.F.: Variable-length binary encodings. Bell System Technical Journal 38(4), 933–967 (1959)

Gonçalves, D., Lévêque, B., Pinlou, A.: Triangle contact representations and duality. Discrete Comput. Geom. 48(1), 239–254 (2012)

Hliněný, P.: Classes and recognition of curve contact graphs. J. Comb. Theory B 74(1), 87–103 (1998)

Koebe, P.: Kontaktprobleme der konformen Abbildung. Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 88, 141–164 (1936)

Luo, F.: Rigidity of polyhedral surfaces, III. Geometry & Topology 15(4), 2299–2319 (2011)

Malitz, S.M., Papakostas, A.: On the angular resolution of planar graphs. SIAM J. Discrete Math. 7(2), 172–183 (1994)

Mohar, B.: A polynomial time circle packing algorithm. Discrete Math. 117(1-3), 257–263 (1993)

Nešetřil, J., Ossona de Mendez, P.: Sparsity: Graphs, Structures, and Algorithms. Springer (2012)

Nievergelt, J., Reingold, E.M.: Binary search trees of bounded balance. SIAM J. Comput. 2, 33–43 (1973)