Unit Contact Representations of Grid Subgraphs with Regular Polytopes in 2D and 3D

Kleist, Linda and Rahman, Benjamin (2014) Unit Contact Representations of Grid Subgraphs with Regular Polytopes in 2D and 3D. In: Graph Drawing 22nd International Symposium, GD 2014, September 24-26, 2014, Würzburg, Germany , pp. 137-148 (Official URL: http://dx.doi.org/10.1007/978-3-662-45803-7_12).

Full text not available from this repository.

Abstract

We present a strategy to construct unit proper contact representations (UPCR) for subgraphs of certain highly symmetric grids. This strategy can be applied to obtain graphs admitting UPCRs with squares and cubes, whose recognition is NP-complete. We show that subgraphs of the square grid allow for UPCR with squares which strengthens the previously known cube representation. Indeed, we give UPCR for subgraphs of a d-dimensional grid with d-cubes. Additionally, we show that subgraphs of the triangular grid admit a UPCR with cubes, implying that the same holds for each subgraph of an Archimedean grid. Considering further polygons, we construct UPCR with regular 3k-gons of the hexagonal grid and UPCR with regular 4k-gons of the square grid.

Item Type:Conference Paper
Additional Information:10.1007/978-3-662-45803-7_12
Classifications:G Algorithms and Complexity > G.560 Geometry
P Styles > P.060 3D
P Styles > P.999 Others
Z Theory > Z.500 Representations
ID Code:1428

Repository Staff Only: item control page

References

Alam, M.J., Kobourov, S.G., Pupyrev, S., Toeniskoetter, J.: Happy edges: Threshold-coloring of regular lattices. In: Ferro, A., Luccio, F., Widmayer, P. (eds.) FUN 2014. LNCS, vol. 8496, pp. 28–39. Springer, Heidelberg (2014)

Alam, M.J., Chaplick, S., Fijavž, G., Kaufmann, M., Kobourov, S.G., Pupyrev, S.: Threshold-coloring and unit-cube contact representation of graphs. In: Brandstädt, A., Jansen, K., Reischuk, R. (eds.) WG 2013. LNCS, vol. 8165, pp. 26–37. Springer, Heidelberg (2013)

Bremner, D., Evans, W., Frati, F., Heyer, L., Kobourov, S.G., Lenhart, W.J., Liotta, G., Rappaport, D., Whitesides, S.H.: On representing graphs by touching cuboids. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 187–198. Springer, Heidelberg (2013)

Breu, H., Kirkpatrick, D.G.: On the complexity of recognizing intersection and touching graphs of disks. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 88–98. Springer, Heidelberg (1996)

Czyzowicz, J., Kranakis, E., Krizanc, D., Urrutia, J.: Discrete realizations of contact and intersection graphs. International Journal of Pure and Applied Mathematics 13(4), 429 (2004)

Felsner, S., Francis, M.C.: Contact representations of planar graphs with cubes. In: Proceedings of the 27th Annual ACM Symposium on Computational Geometry, pp. 315–320. ACM (2011)

Gansner, E.R., Hu, Y.F., Kaufmann, M., Kobourov, S.G.: Optimal polygonal representation of planar graphs. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 417–432. Springer, Heidelberg (2010)

Gonçalves, D., Lévêque, B., Pinlou, A.: Triangle contact representations and duality. Discrete & Computational Geometry 48(1), 239–254 (2012)

Hliněnỳ, P., Kratochvíl, J.: Representing graphs by disks and balls (a survey of recognition-complexity results). Discrete Mathematics 229(1-3), 101–124 (2001)

Koebe, P.: Kontaktprobleme der konformen abbildung. Berichte über die Verhandlungen der Sächsischen Akademien der Wissenschaften zu Leipzig, Math.-Phys. Kl. 88, 141–164 (1936)

Schramm, O.: Combinatorically prescribed packings and applications to conformal and quasiconformal maps. Ph. D. thesis. Princeton University (1990)

Schramm, O.: Square tilings with prescribed combinatorics. Israel Journal of Mathematics 84(1-2), 97–118 (1993)

Zhao, L.: The kissing number of the regular polygon. Discrete Mathematics 188(1), 293–296 (1998)

Zhao, L., Xu, J.: The kissing number of the regular pentagon. Discrete Mathematics 252(1), 293–298 (2002)