On the Complexity of HV-rectilinear Planarity Testing

Didimo, Walter and Liotta, Giuseppe and Patrignani, Maurizio (2014) On the Complexity of HV-rectilinear Planarity Testing. In: Graph Drawing 22nd International Symposium, GD 2014, September 24-26, 2014, Würzburg, Germany , pp. 343-354 (Official URL: http://dx.doi.org/10.1007/978-3-662-45803-7_29).

Full text not available from this repository.

Abstract

An HV-restricted planar graph G is a planar graph with vertex-degree at most four and such that each edge is labeled either H (horizontal) or V (vertical). The HV-rectilinear planarity testing problem asks whether G admits a planar drawing where every edge labeled V is drawn as a vertical segment and every edge labeled H is drawn as a horizontal segment. We prove that HV-rectilinear planarity testing is NP-complete even for graphs having vertex degree at most three, which solves an open problem posed by both Manuch et al. (GD 2010) and Durucher et al. (LATIN 2014). We also show that HV-rectilinear planarity can be tested in polynomial time for partial 2-trees of maximum degree four, which extends a previous result by Durucher et al. (LATIN 2014) about HV-restricted planarity testing of biconnected outerplanar graphs of maximum degree three. When the test is positive, our algorithm returns an orthogonal representation of G that satisfies the given H- and V-labels on the edges.

Item Type:Conference Paper
Additional Information:10.1007/978-3-662-45803-7_29
Classifications:G Algorithms and Complexity > G.630 Labeling
G Algorithms and Complexity > G.770 Planarity Testing
M Methods > M.900 Tree
P Styles > P.600 Poly-line > P.600.700 Orthogonal
Z Theory > Z.750 Topology
ID Code:1445

Repository Staff Only: item control page

References

Bertolazzi, P., Di Battista, G., Didimo, W.: Computing orthogonal drawings with the minimum number of bends. IEEE Transactions on Computers 49(8), 826–840 (2000)

Bläsius, T., Krug, M., Rutter, I., Wagner, D.: Orthogonal graph drawing with flexibility constraints. Algorithmica 68(4), 859–885 (2014)

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press (2009)

Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. on Comp. 25, 956–997 (1996)

Di Battista, G., Kim, E., Liotta, G., Lubiw, A., Whitesides, S.: The shape of orthogonal cycles in three dimensions. Discrete & Computational Geometry 47(3), 461–491 (2012)

Di Battista, G., Liotta, G., Lubiw, A., Whitesides, S.: Embedding problems for paths with direction constrained edges. Theoretical Computer Science 289(2), 897–917 (2002)

Di Battista, G., Liotta, G., Vargiu, F.: Spirality and optimal orthogonal drawings. SIAM J. on Comp. 27(6), 1764–1811 (1998)

Di Giacomo, E., Liotta, G., Patrignani, M.: A note on 3D orthogonal drawings with direction constrained edges. Inf. Proc. Lett. 90(2), 97–101 (2004)

Durocher, S., Felsner, S., Mehrabi, S., Mondal, D.: Drawing HV-restricted planar graphs. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 156–167. Springer, Heidelberg (2014)

Felsner, S., Kaufmann, M., Valtr, P.: Bend-optimal orthogonal graph drawing in the general position model. Computational Geometry 47(3), 460–468 (2014)

Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. on Comp. 31(2), 601–625 (2001)

Hoffman, F.: Embedding rectilinear graphs in linear time. Inf. Proc. Lett. 29(2), 75–79 (1988)

Maňuch, J., Patterson, M., Poon, S.-H., Thachuk, C.: Complexity of finding non-planar rectilinear drawings of graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 305–316. Springer, Heidelberg (2011)

Mutzel, P., Weiskircher, R.: Bend minimization in planar orthogonal drawings using integer programming. SIAM J. on Opt. 17(3), 665–687 (2006)

Rahman, M.S., Nakano, S.I., Nishizeki, T.: A linear algorithm for bend-optimal orthogonal drawings of triconnected cubic plane graphs. J. of Graph Alg. and Appl. 3(4), 31–62 (1999)

Rahman, M.S., Nishizeki, T., Naznin, M.: Orthogonal drawings of plane graphs without bends. J. of Graph Alg. and Appl. 7(4), 335–362 (2003)

Tamassia, R., Tollis, I.G.: Planar grid embedding in linear time. IEEE Transactions on Circuits Systems CAS-36(9), 1230–1234 (1989)

Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. on Comp. 16(3), 421–444 (1987)

Vijayan, G., Wigderson, A.: Rectilinear graphs and their embeddings. SIAM J. on Comp. 14(2), 355–372 (1985)

Zhou, X., Nishizeki, T.: Orthogonal drawings of series-parallel graphs with minimum bends. SIAM J. on Discr. Math. 22(4), 1570–1604 (2008)