A Universal Point Set for 2-Outerplanar Graphs

Angelini, Patrizio and Bruckdorfer, Till and Kaufmann, Michael and Mchedlidze, Tamara (2015) A Universal Point Set for 2-Outerplanar Graphs. In: Graph Drawing and Network Visualization: 23rd International Symposium, GD 2015, September 24-26, 2015, Los Angeles, CA, USA , pp. 409-422 (Official URL: http://dx.doi.org/10.1007/978-3-319-27261-0_34).

Full text not available from this repository.


Item Type:Conference Paper
Classifications:G Algorithms and Complexity > G.560 Geometry
P Styles > P.540 Planar
P Styles > P.720 Straight-line
Z Theory > Z.250 Geometry
ID Code:1506

Repository Staff Only: item control page

References

Angelini, P., Di Battista, G., Kaufmann, M., Mchedlidze, T., Roselli, V., Squarcella, C.: Small point sets for simply-nested planar graphs. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 75–85. Springer, Heidelberg (2011)

Angelini, P., Bruckdorfer, T., Kaufmann, M., Mchedlidze, T.: A universal point set for 2-outerplanar graphs (2015). CoRR abs/​1508.​05784

Bannister, M.J., Cheng, Z., Devanny, W.E., Eppstein, D.: Superpatterns and universal point sets. J. Graph Algorithms Appl. 18(2), 177–209 (2014)

Binucci, C., Di Giacomo, E., Didimo, W., Estrella-Balderrama, A., Frati, F., Kobourov, S., Liotta, G.: Upward straight-line embeddings of directed graphs into point sets. CGTA 43, 219–232 (2010)

Bose, P.: On embedding an outer-planar graph in a point set. CGTA 23(3), 303–312 (2002)

Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. J. Graph Algorithms Appl. 10(2), 353–366 (2006)

de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting fáry embeddings of planar graphs. In: Simon, J. (ed.) STOC ’88, pp. 426–433. ACM (1988)

Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10, 41–51 (1990)

Fulek, R., Tóth, C.D.: Universal point sets for planar three-trees. J. Discrete Algorithms 30, 101–112 (2015)

Gritzmann, P., Pach, B.M.J., Pollack, R.: Embedding a planar triangulation with vertices at specified positions. Am. Math. Monthly 98, 165–166 (1991)

Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all n-vertex planar graphs. Inf. Process. Lett. 92(2), 95–98 (2004)

Schnyder, W.: Embedding planar graphs on the grid. In: Johnson, D.S. (ed.) SODA ’90, pp. 138–148. SIAM (1990)