Knuthian Drawings of Series-Parallel Flowcharts

Goodrich, Michael T. and Johnson, Timothy and Torres, Manuel (2015) Knuthian Drawings of Series-Parallel Flowcharts. In: Graph Drawing and Network Visualization, 23rd International Symposium, GD 2015, September 24-26, 2015, Los Angeles, CA, USA , pp. 556-557 (Official URL:

Full text not available from this repository.


In 1963, Knuth published the first paper on a computer algorithm for a graph drawing problem, entitled “Computer-drawn Flowcharts” [8]. In this paper, Knuth describes an algorithm that takes as input an n-vertex directed graph G that represents a flowchart and, using the modern language of graph drawing, produces an orthogonal drawing of G.

Item Type:Conference Poster
Classifications:P Styles > P.600 Poly-line > P.600.700 Orthogonal
P Styles > P.840 Upward
ID Code:1523

Repository Staff Only: item control page


Bertolazzi, P., Cohen, R.F., Di Battista, G., Tamassia, R., Tollis, I.G.: How to draw a series-parallel digraph. Int. J. Comput. Geom. Appl. 04(04), 385–402 (1994)

Biedl, T.: Small drawings of outerplanar graphs, series-parallel graphs, and other planar graphs. Discrete Comput. Geom. 45(1), 141–160 (2011)

Chan, T.M., Goodrich, M.T., Kosaraju, S., Tamassia, R.: Optimizing area and aspect ratio in straight-line orthogonal tree drawings. Comput. Geom. 23(2), 153–162 (2002)

Di Battista, G., Didimo, W., Patrignani, M., Pizzonia, M.: Orthogonal and quasi-upward drawings with vertices of prescribed size. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 297–310. Springer, Heidelberg (1999)

Garg, A., Goodrich, M.T., Tamassia, R.: Planar upward tree drawings with optimal area. Int. J. Comput. Geom. Appl. 06(03), 333–356 (1996)

Goodrich, M.T., Johnson, T., Torres, M.: Knuthian drawings of series-parallel flowcharts. ArXiv ePrint, (2015). http://​arxiv.​org/​abs/​1508.​03931

Hong, S.-H., Eades, P., Lee, S.-H.: Drawing series parallel digraphs symmetrically. Comput. Geom. 17(34), 165–188 (2000)

Knuth, D.E.: Computer-drawn flowcharts. Commun. ACM 6(9), 555–563 (1963)