Contact Graphs of Curves

Hlinený, Petr (1996) Contact Graphs of Curves. In: Symposium on Graph Drawing, GD 1995, September 20-22, 1995, Passau, Germany , pp. 312-323 (Official URL: http://dx.doi.org/10.1007/BFb0021814).

Full text not available from this repository.

Abstract

Contact graphs are a special kind of intersection graphs of geometrical objects in which we do not allow the objects to cross but only to touch each other. Contact graphs of simple curves (and line segments as a special case) in the plane are considered. Several classes of contact graphs are introduced and their properties and inclusions between them are studied. Also the relation between planar and contact graphs is mentioned. Finally, it is proved that the recognition of contact graphs of curves (line segments) is NP-complete (NP-hard) even for planar graphs.

Item Type:Conference Paper
Additional Information:10.1007/BFb0021814
Classifications:Z Theory > Z.250 Geometry
M Methods > M.600 Planar
G Algorithms and Complexity > G.560 Geometry
ID Code:159

Repository Staff Only: item control page

References

K. S. Booth, G. S. Lucker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, J. Comp. Systems Sci. 13 (1976), 255-265.

A. Bouchet, Reducing prime graphs and recognizing circle graphs, Combinatorica 7 (1987), 243-254.

G. Ehrlich, S. Even, R. E. Tarjan, Intersection graphs of curves in the plane, J. of Comb. Theory Ser. B 21 (1976), 8-20.

H. de Fraysseix, P. O. de Mendez, J. Pach, Representation of planar graphs by segments, 63. Intuitive Geometry (1991), 110-117.

H. de Fraysseix, P. O. de Mendez, P. Rosenstiehl, On triangle contact graphs, Combinatorics, Probability and Computing 3 (1994), 233-246.

H. de Fraysseix, P. O. de Mendez, to appear.

M. R. Garey, D. S. Johnson, Computers and Intractability, W. H. Freeman and Company, New York 1979.

F. Gavril, Algorithms for a maximum clique and maximum independent set of a circle graph, Networks 4 (1973), 261-273.

P. Hlinený, Contact graphs of curves, KAM Preprint Series 95-285, Dept. of Applied Math., Charles University, Czech rep., 1995.

P. Koebe, Kontaktprobleme der konformen Abbildung, Berichte über die Verhandlungen der Sächsischen, Akad. d. Wiss., Math.-Physische Klasse 88 (1936), 141-164.

J. Kratochvíl, String graphs II: Recognizing string graphs is NP-hard, J. of Comb. Theory Ser. B 1 (1991), 67-78.

J. Kratochvíl, J. Matousek, Intersection graphs of segments, J. of Comb. Theory Ser. B 2 (1994), 289-315.

J. Kratochvíl, J. Matousek, String graphs requiring exponential representations, J. of Comb. Theory Ser. B 2 (1991), 1-4.

C. B. Lekkerkerker, J. C. Boland, Representation of finite graphs by a set of intervals on the real line, Fund. Math. 51 (1962), 45-64.

S. Roberts, On the boxicity and cubicity of a graph, in "Recent Progresses in Combinatorics" 301-310, Academic Press, New York, 1969.

F. W. Sinden, Topology of thin film RC-circuits, Bell System Techn. J. (1966), 1639-1662.

C. Thomassen, presentation at Graph Drawing '93, Paris, 1993.