Maintaining the Mental Map for Circular Drawings

Kaufmann, Michael and Wiese, Roland (2002) Maintaining the Mental Map for Circular Drawings. In: Graph Drawing 10th International Symposium, GD 2002, August 26-28, 2002, Irvine, CA, USA , pp. 12-22 (Official URL: http://dx.doi.org/10.1007/3-540-36151-0_2).

Full text not available from this repository.

Abstract

In this paper we present new ideas to extend the framework for circular drawing of networks by Six and Tollis [15] by some new concepts which makes the framework suitable for user interaction. The original approach displays each biconnected component in a circular way, and the blocktree of the graph as a tree drawn radially [9]. We introduce the concept of hicircular drawings, a hierarchical extension of the mentioned framework replacing the circles of single vertices by circles of circular or star-like structures. This concept is inspired by the works of Brandenburg on graph clustering, and the recursive concepts of series-parallel graphs, PQ- resp. SPQR-trees.

Item Type:Conference Paper
Additional Information:10.1007/3-540-36151-0_2
Classifications:P Styles > P.660 Radial
P Styles > P.120 Circular
ID Code:247

Repository Staff Only: item control page

References

Booth, K.S. and Lueker G.S., Tsting for the consecutive ones property, intervals graphs and graph planarity testing using PQ-trees algorithms, J. Comput. System Sci. 13, pp. 335-379, 1976.

Brandenburg F., Graph Clustering 1: Cycles of Cliques, Proc. GD '97, LNCS 1353, Springer, pp. 158-168, 1998.

Branke, J., Dynamic Graph Drawing, in Kaufmann/Wagner (Eds.) Drawing Graphs: Methods and Models, LNCS 2025, Sringer, pp. 228-246, 2001.

Brockenauer R. and S. Cornelsen, Drawing Clusters and Hierarchies, in Kaufmann/Wagner (Eds.) Drawing Graphs: Methods and Models, LNCS 2025, Sringer, pp. 193-227, 2001.

Di Battista, G., Eades, P., Tamassia R. and I.G. Tollis, Graph Drawing: Algorithms for the Visualization of Graphs, Prentice Hall, 1990.

Di Battista G., and Tamassia R., On-line graph algorithms with SPQR-trees, Proc. ICALP 1990, LNCS 442, Springer, pp. 598-611, 1990.

Dogrusöz U., B. Madden, Circular Layout in the Graph Layout Toolkit, Proc. GD '96, LNCS 1190, Springer, pp.92-100, 1997.

Duncan, Ch., Goodrich M., and Kobourov St., Planarity-Preserving Clustering and Embedding of Large Graphs, Proc. GD'99, LNCSS 1731, Springer, pp. 186-196, 2000.

Eades P., Drawing Free Trees, Bulletin of the Institute for Combinatorics and its Applications, 5, pp. 10-36, 1992.

Edachery, J., Sen A., Brandenburg F., Graph Clustering Using Distance-k Cliques, Proc. GD'99, LNCS 1731, Springer, pp. 98-106, 2000.

Kar G., B. Madden and R. Gilbert, Heuristic Layout Algorithms for Network Presentation Services, IEEE Network, 11, pp. 29-36, 1988.

Krebs V., Visualizing Human Networks, Release 1.0: Esther Dyson's Monthly Report, pp. 1-25, 1996.

Lengauer T., Combinatorial Algorithms for Integrated Circuit Layout, Wiley-Teubner, 1990.

Six, J.M. and I.G. Tollis, Circular Drawings of Biconnected Graphs, Proc. Alenex'99, LNCS 1619, Springer, pp. 57-75, 1999.

Six, J.M. and I.G. Tollis, A Framework for Circular Drawings of Networks, Proc. GD'99, LNCS 1731, Springer, pp. 107-116, 2000.

Six, J.M., Ph.D. Thesis, University of Texas at Dallas, 2000.

Sugiyama K., S. Tagawa and M. Toda. Methods for Visual Understanding of Hierarchical System Structures, IEEE Transactions on Systems, Man and Cybernetics, 11(2), pp. 109-125, 1981.

Sugiyama K., K. Misue. Visualisation of structural information: Automatic drawing of compound digraphs, IEEE Transactions on Systems, Man and Cybernetics, 21(4), pp. 876-892, 1991.

The yFiles library: http://www-pr.informatik.uni-tuebingen.de/yfiles/ and http://www.yworks.de