Drawing Planar Graphs with Circular Arcs

Cheng, C. C. and Duncan, Christian A. and Goodrich, Michael T. and Kobourov, Stephen G. (1999) Drawing Planar Graphs with Circular Arcs. In: Graph Drawing 7th International Symposium, GD’99, September 15-19, 1999, Štirín Castle, Czech Republic , pp. 117-126 (Official URL: http://dx.doi.org/10.1007/3-540-46648-7_12).

Full text not available from this repository.


In this paper we address the problem of drawing planar graphs with circular arcs while maintaining good angular resolution and small drawing area. We present a lower bound on the area of drawings in which edges are drawn using exactly one circular arc. We also give an algorithm for drawing n-vertex planar graphs such that the edges are sequences of two continuous circular arcs. The algorithm runs in O(n) time and embeds the graph on the O(n) \times O(n) grid, while maintaining \Theta(1/d(v)) angular resolution, where d(v) is the degree of vertex v. Since in this case we use circular arcs of infinite radius, this is also the first algorithm to simultaneously achieve good angular resolution, small area and at most one bend per edge using straight-line segments. Finally, we show how to create drawings in which edges are smooth C^{1}-continuous curves, represented by a sequence of at most three circular arcs.

Item Type:Conference Paper
Additional Information:10.1007/3-540-46648-7_12
Classifications:G Algorithms and Complexity > G.070 Area / Edge Length
M Methods > M.600 Planar
G Algorithms and Complexity > G.210 Bends
P Styles > P.120 Circular
ID Code:278

Repository Staff Only: item control page


G. Di Battista, P. Eades, R. Tamassia, and I. Tollis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Englewood Cliffs, NJ, 1999.

M. Chrobak and T. Payne. A linear-time algorithm for drawing planar graphs. Inform. Process. Lett., 54:241-246, 1995.

H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combinatorica, 10(1):41-51, 1990.

I. Fary. On straight lines representation of planar graphs. Acta Sci. Math. Szeged, 11:229-233, 1948.

M. Formann, T. Hagerup, J. Haralambides, M. Kaufmann, F. T. Leighton, A. Simvonis, Emo Welzl, and G. Woeginger. Drawing graphs in the plane with high resolution. SIAM J. Comput., 22:1035-1052, 1993.

A. Garg and R. Tamassia. Planar drawings and angular resolution: Algorithms and bounds. In Proc. 2nd Annu. European Sympos. Algorithms, volume 855 of Lecture Notes Comput. Sci., pages 12-23. Springer-Verlag, 1994.

M. T. Goodrich and C. G. Wagner. A framework for drawing planar graphs with curves and polylines. In Graph Drawing '98, pages 153-166, 1998.

C. Gutwenger and P. Mutzel. Planar polyline drawings with good angular resolution. In Graph Drawing '98, pages 167-182, 1998.

G. Kant. Drawing planar graphs using the lmc-ordering. In Proc. 33th Annu. IEEE Sympos. Found. Comput. Sci., pages 101-110, 1992.

G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16:4-32, 1996. (special issue on Graph Drawing, edited by G. Di Battista and R. Tamassia).

S. Malitz and A. Papakostas. On the angular resolution of planar graphs. SIAM J. Discrete Math., 7:172-183, 1994.

W. Schnyder. Embedding planar graphs on the grid. In Proc. 1st ACM-SIAM Sympos. Discrete Algorithms, pages 138-148, 1990.

W. T. Tutte. How to draw a graph. Proceedings London Mathematical Society, 13(52):743-768, 1963.

K. Wagner. Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deutschen Mathematiker-Vereinigung, 46:26-32, 1936.