An Experimental Comparison of Orthogonal Compaction Algorithms (Extended Abstract)

Klau, Gunnar W. and Klein, Karsten and Mutzel, Petra (2001) An Experimental Comparison of Orthogonal Compaction Algorithms (Extended Abstract). In: Graph Drawing 8th International Symposium, GD 2000, September 20–23, 2000, Colonial Williamsburg, VA, USA , pp. 37-51 (Official URL: http://dx.doi.org/10.1007/3-540-44541-2_5).

Full text not available from this repository.

Abstract

We present an experimental study in which we compare the state-of-the-art methods for compacting orthogonal graph layouts. Given the shape of a planar orthogonal drawing, the task is to place the vertices and the bends on grid points so that the total area or the total edge length is minimised. We compare four constructive heuristics based on rectangular dissection and on turn-regularity, also in combination with two improvement heuristics based on longest paths and network flows, and an exact method which is able to compute provable optimal drawings of minimum total edge length. We provide a performance evaluation in terms of quality and running time. The test data consists of two test-suites already used in previous experimental research. In order to get hard instances, we randomly generated an additional set of planar graphs.

Item Type:Conference Paper
Additional Information:10.1007/3-540-44541-2_5
Classifications:G Algorithms and Complexity > G.999 Others
G Algorithms and Complexity > G.070 Area / Edge Length
M Methods > M.600 Planar
P Styles > P.600 Poly-line > P.600.700 Orthogonal
P Styles > P.540 Planar
ID Code:283

Repository Staff Only: item control page

References

C. Batini, E. Nardelli, and R. Tamassia. A layout algorithm for data-flow diagrams. IEEE Trans. Soft. Eng., SE-12(4):538-546, 1986.

R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and readability of diagrams. IEEE Trans. Syst. Man Cybern., SMC-18(1):61-79, 1988.

M. Jünger and P. Mutzel. Maximum planar subgraphs and nice embeddings: Practical layout tools. Algorithmica, Special Issue on Graph Drawing, 16(1):33-59, 1996.

P. Mutzel and R. Weiskircher. Optimizing over all combinatorial embeddings of a planar graph. In G. P. Cornuéjols, R. E. Burkard, and G. J. Woeginger, editors, Integer Programming and Combinatorial Optimization (IPCO '99), volume 1610 of LNCS, pages 361-376. Springer-Verlag, 1999.

C. Cutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into a planar graph. Technical report, Technische Universität Wien, 2000. Submitted for publication.

U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low bend numbers. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD '95), volume 1027 of LNCS, pages 154-266. Springer-Verlag, 1996.

P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal drawings with the minimum number of bends. In Proc. 5th Workshop Algorithms Data Struct. (WADS'97), volume 1272 of LNCS, pages 331-344, 1997.

M. Eiglsperger, U. Fößmeier, and M. Kaufmann. Orthogonal graph drawing with constraints. In Proc. 11th Symposium on Discrete Algorithms (SODA '00). ACM-SIAM, 2000.

G. W. Klau and P. Mutzel. Quasi-orthogonal drawing of planar graphs. Technical Report MPI-I-98-1-013, Max-Planck-Institut für Informatik, Saarbrücken, 1998.

S. Bridgeman, G. Di Battista, W. Didimo, G. Liotta, R. Tamassia and L. Vismara. Turn-regularity and optimal area drawings for orthogonal representations. Computational Geometry Theory and Applications (CGTA). To appear.

G. W. Klau and P. Mutzel. Optimal compaction of orthogonal grid drawings. In G. P. Cornuéjols, R. E. Burkard, and G. J. Woeginger, editors, Integer Programming and Combinatorial Optimization (IPCO '99), volume 1610 of LNCS, pages 304-319. Springer-Verlag, 1999.

C. Gutwenger, M. Jünger, G. W. Klau, and P. Mutzel. Graph drawing algorithm engineering with AGD. Technical report, Technische Universität Wien, 2000.

AGD. AGD User Manual. Max-Planck-Institut Saarbrücken, Universität Halle, Universität Köln, 1999. http://www.mpi-sb.mpg.de/AGD.

Graph drawing toolkit: An object-oriented library for handling and drawing graphs. http://www.dia.uniroma3.it/~gdt.

N. Gelfand and R. Tamassia. Algorithmic patterns for orthogonal graph drawing. In S. Whitesides, editor, Graph Drawing (Proc. GD '98), volume 1547 of Lecture Notes in Computer Science, pages 138-152. Springer-Verlag, 1998.

G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An experimental comparison of four graph drawing algorithms. Computational Geometry: Theory and Applications, 7:303-316, 1997.

G. Di Battista, A. Garg, G. Liotta. An experimental comparison of three drawing algorithms. In Proceedings of the 11th Annual Symposium on Computational Geometry (SoCG '95), pages 306-315, 1995.

M. Jünger and P. Mutzel. Exact and heuristic algorithms for 2-layer straightline crossing minimization. In F. J. Brandenburg, editor, Proceedings of the 3rd International Symposium on Graph Drawing (GD '95), volume 1027 of LNCS, pages 337-348. Springer-Verlag, 1995.

F. J. Brandenburg, M. Himsolt, and C. Rohrer. An experimental comparison of force-directed and randomized graph drawing algorithms. In F. J. Brandenburg, editor, Proceedings of the 3rd International Symposium on Graph Drawing (GD '95), volume 1027 of LNCS, pages 76-87. Springer-Verlag, 1996.

R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput., 16(3):421-444, 1987.

M. Patrignani. On the complexity of orthogonal compaction. In F. Dehne, A. Gupta, J.-R. Sack, and R. Tamassia, editors, Proc. 6th International Workshop on Algorithms and Data Structures (WADS '99), volume 1663 of LNCS, pages 56-61. Springer-Verlag, 1999.

T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. John Wiley & Sons, New York, 1990.

G. W. Klau, K. Klein, and P. Mutzel. An experimental comparison of orthogonal compaction algorithms. Technical Report TR-186-1-00-03, Technische Universität Wien, 2000. Online version at http://www.ads.tuwien.ac.at/publications/TR/TR-186-1-00-03.