Graph Planarity and Related Topics

Thomas, Robin (1999) Graph Planarity and Related Topics. In: Graph Drawing 7th International Symposium, GD’99, September 15-19, 1999, Štirín Castle, Czech Republic , pp. 137-144 (Official URL: http://dx.doi.org/10.1007/3-540-46648-7_14).

Full text not available from this repository.

Abstract

This compendium is the result of reformatting and minor editing of the author's transparencies for his talk delivered at the conference. The talk covered Euler's Formula, Kuratowski's Theorem, linear planarity tests, Schnyder's Theorem and drawing on the grid, the two paths problem, Pfaffian orientations, linkless embeddings, and the Four Color Theorem.

Item Type:Conference Paper
Additional Information:10.1007/3-540-46648-7_14
Classifications:Z Theory > Z.001 General
G Algorithms and Complexity > G.490 Embeddings
M Methods > M.600 Planar
G Algorithms and Complexity > G.770 Planarity Testing
ID Code:303

Repository Staff Only: item control page

References

N. Alon, P. D. Seymour and R. Thomas, A separator theorem for non-planar graphs, J. Amer. Math. Soc. 3 (1990), 801-808.

N. Alon, P. D. Seymour and R. Thomas, Planar separators, SIAM J. Disc. Math. 7 (1994), 184-193.

K. Appel and W. Haken, Every planar map is four colorable, Part I: discharging, Illinois J. of Math. 21 (1977), 429-490.

K. Appel, W. Haken and J. Koch, Every planar map is four colorable, Part II: reducibility, Illinois J. of Math. 21 (1977), 491-567.

K. Appel and W. Haken, Every planar map is four colorable, Contemp. Math. 98 (1989).

D. Bar-Natan, Lie algebras and the four color theorem, Combinatorica 17 (1997), 43-52.

K. S. Booth and G. S. Luecker, Testing the consecutive ones property, interval graphs planarity using PQ-tree algorithms, J. Comput. Syst. Sci. 13 (1976), 335-379.

J. Boyer and W. Myrvold, Stop minding your P's and Q's: A simplified O(n) planar embedding algorithm, Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (1999), 140-146.

R. A. Brualdi and B. L. Shader, Matrices of sign-solvable linear systems, Cambridge Tracts in Mathematics 116 (1995).

Y. Colin de Verdière, Sur un nouvel invariant des graphes et un critère de planarité, J. Combin. Theory Ser. B 50, (1990), 11-21.

I. Fáry, On straight line representations of planar graphs, Acta Univ. Szeged. Sect. Sci. Math. 11 (1948), 229-233.

H. de Fraysseix, J. Pach and R. Pollack, How to draw a graph on a grid, Combinatorica 10 (1990), 41-51.

J. E. Hopcroft and R. E. Tarjan, Efficient planarity testing, J. Assoc. Comput. Mach. 21 (1974), 549-568.

L. H. Kauffman, Map coloring and the vector cross product, J. Combin. Theory Ser. B 48 (1990), 145-154.

L. H. Kauffman and R. Thomas, Temperley-Lieb algebras and the Four-Color Theorem, manuscript.

P. W. Kasteleyn, Dimer statistics and phase transitions, J. Math. Phys. 4 (1963), 287-293.

P. W. Kasteleyn, Graph theory and crystal physics, in Graph Theory and Theoretical Physics (ed. F. Harary), Academic Press, New York, 1967, 43-110.

V. Klee, R. Ladner and R. Manber, Sign-solvability revisited, Linear Algebra Appl. 59 (1984), 131-158.

A. Lempel, S. Even and I. Cederbaum, An algorithm for planarity testing of graphs, In: Theory of Graphs, P. Rosensthiel ed., Gordon and Breach, New York, 1967, 215-232.

R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math. 36 (1979), 177-189.

L. Lovász and A. Schrijver, A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs, Proc. Amer. Math. Soc. 126 (1998), 1275-1285.

Y. Matiyasevich, The Four Colour Theorem as a possible corollary of binomial summation, manuscript.

W. McCuaig, Pólya's permanent problem, manuscript (81 pages), June 1997.

G. Pólya, Aufgabe 424, Arch. Math. Phys. Ser. 20 (1913), 271.

N. Robertson, D. P. Sanders, P. D. Seymour and R. Thomas, The four-colour theorem, J. Combin. Theory Ser. B 70 (1997), 2-44.

N. Robertson and P. D. Seymour, Graph Minors XIII. The disjoint paths problem, J. Combin. Theory Ser. B 63 (1995), 65-110.

N. Robertson and P. D. Seymour, Graph Minors XX. Wagner's conjecture, manuscript.

N. Robertson, P. D. Seymour and R. Thomas, Sach's linkless embedding conjecture, J. Combin. Theory Ser. B 64 (1995), 185-227.

N. Robertson, P. D. Seymour and R. Thomas, Permanents, Pfaffian orientations, and even directed circuits, manuscript.

T. L. Saaty, Thirteen colorful variations on Guthrie's four-color conjecture, Am. Math. Monthly 79 (1972), 2-43.

W. Schnyder, Planar graphs and poset dimension, Order 5 (1991), 323-343.

P. D. Seymour, On the two-colouring of hypergraphs, Quart. J. Math. Oxford 25 (1974), 303-312.

P. D. Seymour, Disjoint paths in graphs, Discrete Math. 29 (1980), 293-309.

P. D. Seymour and C. Thomassen, Characterization of even directed graphs, J. Combin. Theory Ser. B 42 (1987), 36-45.

Y. Shiloach, A polynomial solution to the undirected two paths problem. J. Assoc. Comp. Machinery, 27, (1980), 445-456.

W.-K. Shih and W.-L. Hsu, A new planarity test, Theoret. Comp. Sci. 223 (1999), 179-191.

R. Thomas, Planarity in linear time, unpublished class notes, available from http://www.math.gatech.edu/~thomas/planarity.ps.

R. Thomas, An update on the Four-Color Theorem, Notices Amer. Math. Soc. 45 (1998), 848-859.

C. Thomassen, 2-linked graphs, Europ. J. Combinatorics 1 (1980), 371-378.

C. Thomassen, Kuratowski's theorem, J. Graph Theory 5 (1981), 225-241.

C. Thomassen, Even cycles in directed graphs, European J. Combin. 6 (1985), 85-89.

C. Thomassen, Sign-nonsingular matrices and even cycles in directed graphs, Linear Algebra and Appl. 75 (1986), 27-41.

C. Thomassen, The even cycle problem for directed graphs, J. Amer. Math. Soc. 5 (1992), 217-229.

V. V. Vazirani and M. Yannakakis, Pfaffian orientations, 0-1 permanents, and even cycles in directed graphs, Discrete Appl. Math. 25 (1989), 179-190.