A Combinatorial Framework for Map LabelingWagner, Frank and Wolff, Alexander (1998) A Combinatorial Framework for Map Labeling. In: Graph Drawing 6th International Symposium, GD’ 98, August 1315, 1998 , pp. 316321(Official URL: http://dx.doi.org/10.1007/3540376232_24). Full text not available from this repository.
Official URL: http://dx.doi.org/10.1007/3540376232_24
AbstractThe general map labeling problem consists in labeling a set of sites (points, lines, regions) given a set of candidates (rectangles, circles, ellipses, irregularly shaped labels) for each site. A map can be a classical cartographical map, a diagram, a graph or any other figure that needs to be labeled. A labeling is either a complete set of nonconflicting candidates, one per site, or a subset of maximum cardinality. Finding such a labeling is NPhard. We present a combinatorial framework to attack the problem in its full generality. The key idea is to separate the geometric from the combinatorial part of the problem. The latter is captured by the conflict graph of the candidates and by rules which successively simplify this graph towards a nearoptimal solution. We exemplify this framework at the problem of labeling point sets with axisparallel rectangles as candidates, four per point. We do this such that it becomes clear how our concept can be applied to other cases. We study competing algorithms and do a thorough empirical comparison. The new algorithm we suggest is fast, simple and effective.
Actions (login required)
