An Improved Lower Bound for Crossing NumbersDjidjev, Hristo and Vrt'o, Imrich (2002) An Improved Lower Bound for Crossing Numbers. In: Graph Drawing 9th International Symposium, GD 2001, September 2326, 2001 , pp. 96101(Official URL: http://dx.doi.org/10.1007/3540458484_8). Full text not available from this repository.
Official URL: http://dx.doi.org/10.1007/3540458484_8
AbstractThe crossing number of a graph G=(V,E), denoted by cr(G), is the smallest number of edge crossings in any drawing of G in the plane. Leighton [14] proved that for any nvertex graph G of bounded degree, its crossing number satisfiescr(G) + n = Ω(bw2(G), wherebw(G) is the bisection width of G. The lower bound method was extended for graphs of arbitrary vertex degrees to cr in [15,19], where dv is the degree of any vertex v. We improve this bound by showing that the bisection width can be replaced by a larger parameter  the cutwidth of the graph. Our result also yields an upper bound for the pathwidth of G in term of its crossing number.
Actions (login required)
