Barycentric Drawings of Periodic Graphs

Delgado-Friedrichs, Olaf (2004) Barycentric Drawings of Periodic Graphs. In: Graph Drawing 11th International Symposium, GD 2003, September 21-24, 2003, Perugia, Italy , pp. 178-189 (Official URL: http://dx.doi.org/10.1007/978-3-540-24595-7_17).

Full text not available from this repository.

Abstract

We study barycentric placement of vertices in periodic graphs of dimension 2 or higher. Barycentric placements exist for every connected periodic graph, are unique up to affine transformations, and provide a versatile tool not only in drawing, but also in computation. Example applications include symmetric convex drawing in dimension 2 as well as determining topological types of crystals and computing their ideal symmetry groups.

Item Type:Conference Paper
Additional Information:10.1007/978-3-540-24595-7_17
Classifications:G Algorithms and Complexity > G.910 Symmetries
M Methods > M.400 Force-directed / Energy-based
ID Code:448

Repository Staff Only: item control page

References

A. Bachem and R. Kannan. Polynomial algorithms for computing the Smith and Hermite normal forms of an integer Matrix. SIAM Journal Computing, 8:499-507, 1979.

S. J. Chung, Th. Hahn, and W.E. Klee. Nomenclature and generation of three-periodic nets: the vector method. Acta Cryst., A40: 42-50, 1984.

Edith Cohen and Nimrod Megiddo. Recognizing properties of periodic graphs. In Applied geometry and discrete mathematics, volume 4 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 135-146. Amer. Math. Soc., Providence, RI, 1991.

O. Delgado Friedrichs, A.W.M. Dress, D.H. Huson, J. Klinowski, and A. L. Mackay. Systematic enumeration of crystalline networks. Nature, 400:644-647, 1999.

O. Delgado-Friedrichs. Equilibrium placement of periodic graphs and tilings. submitted, 2001.

P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149-160, 1984.

T. Fruchterman and E. Reingold. Graph drawing by force-directed placement. Software-Practice and Experience, 21(11):1129-1164, 1991.

T. Hahn, editor. International Tables for Crystallography, volume A. D. Reidel Publishing Company, Dordrecht, Boston, 1983.

W. E. Klee. The topology of crystal structures. Z. Kristallogr., 179:67-76, 1987.

M. O'Keeffe and N. E. Brese. Uninodal 4-connected 3d nets. I. Nets with out 3- or 4 rings. Acta Cryst., A48:663-669, 1992.

M. O'Keeffe, M. Eddaoudi, Hailian Li, T. Reineke, and O. M. Yaghi. Frameworks for extended solids: Geometrical design principes. J. Solid State Chem., 152(1):3-20, 2000.

James B. Orlin. Some problems on dynamic/periodic graphs. In Progress in combinatorial optimization (Waterloo, Ont., 1982), pages 273-293. Academic Press, Toronto, ON, 1984.

Jürgen Richter-Gebert. Realization Spaces of Polytopes. Springer Verlag, Berlin, 1996.

Rolf L. E. Schwarzenberger. n-dimensional crystallography, volume 41 of Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston, Mass., 1980.

C. Thomassen. Planarity and duality of finite and infinite graphs. Journal of Combinatorial Theory, Series B, 29:244-271, 1980.

M.M.J. Treacy, K.H. Randall, S. Rao, J.A. Perry, and D.J. Chadi. Enumeration of periodic tetrahedral frameworks. Z. Krist., 212:768-791, 1997.

W. T. Tutte. Convex representations of graphs. Proc. London Math. Soc. (3), 10:304-320, 1960.

W.T. Tutte. How to draw a graph. Proc. London Math. Soc., 13:743-767, 1963.