Clustering Cycles into Cycles of Clusters (Extended Abstract)

Cortese, Pier Francesco and Di Battista, Giuseppe and Patrignani, Maurizio and Pizzonia, Maurizio (2004) Clustering Cycles into Cycles of Clusters (Extended Abstract). In: Graph Drawing 12th International Symposium, GD 2004, September 29-October 2, 2004, New York, NY, USA , pp. 100-110 (Official URL: http://dx.doi.org/10.1007/978-3-540-31843-9_12).

Full text not available from this repository.

Abstract

In this paper we study the clustered graphs whose underlying graph is a cycle. This is a simple family of clustered graphs that are "highly non connected". We start by studying 3-cluster cycles, that are clustered graphs such that the underlying graph is a simple cycle and there are three clusters all at the same level. We show that in this case testing the c-planarity can be done efficiently and give an efficient drawing algorithm. Also, we characterize 3-cluster cycles in terms of formal grammars. Finally, we generalize the results on 3-cluster cycles considering clustered graphs that at each level of the inclusion tree have a cycle structure. Even in this case we show efficient c-planarity testing and drawing algorithms. Work partially supported by European Commission – Fet Open project COSIN – COevolution and Self-organisation In dynamical Networks – IST-2001-33555, by European Commission – Fet Open project DELIS – Dynamically Evolving Large Scale Information Systems – Contract no 001907, by ldquoProgetto ALINWEB: Algoritmica per Internet e per il Webrdquo, MIUR Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale, and by ldquoThe Multichannel Adaptive Information Systems (MAIS) Projectrdquo, MIUR–FIRB.

Item Type:Conference Paper
Additional Information:10.1007/978-3-540-31843-9_12
Classifications:P Styles > P.180 Cluster
G Algorithms and Complexity > G.770 Planarity Testing
G Algorithms and Complexity > G.350 Clusters
ID Code:577

Repository Staff Only: item control page

References

T. Biedl, M. Kaufmann, and P. Mutzel. Drawing planar positions II: HH-Drawings. In Workshop on Graph-Theoretical in Computer Science (WG '98), volume 1517, pages 124-136. Springer-Verlag, 1998.

T. C. Biedl. Drawing planar partitions III: Two constraind embedding problems. Tech. Report RRR 13-98, RUTCOR Rutgen University, 1998.

S. Cornelsen and D. Wagner. Completely connected clustered graphs. In Proc. 29th Intl. Workshop on Graph-Theoretic Concepts in Computer Science (WG 2003), volume 2880 of LNCS, pages 168-179. Springer-Verlag, 2003.

P. F. Cortese, G. Di Battista, M. Patrignani, and M. Pizzonia. Clustering cycles into cycles of clusters. Technical Report RT-DIA-91-2004, Dipartimento di Informatica e Automazione, Università di Roma Tre, Rome, Italy, 2004.

G. Di Battista. W. Didimo, and A. Marcandalli. Planarization of clustered graphs. In Proc. Graph Drawing 2001 (GD'01), LNCS, pages 60-74. Springer-Verlag, 2001.

G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall, Upper Saddle River, NJ, 1999.

S. Even. Graph Algorithms. Computer Science Press, Potomac, Maryland, 1979.

Q. W. Feng, R. F. Cohen, and P. Eades. How to draw a planar clustered graph. In Ding-Zhu Du and Ming Li, editors, Proc. COCOON'95, volume 959 of LNCS, pages 21-30. Springer-Verlag, 1995.

Q. W. Feng, R. F. Cohen, and P. Eades. Planarity for clustered graphs. In P. Spirakis, editor, Symposium on Algorithms (Proc. ESA '95), volume 979 of LNCS pages 213-226. Springer-Verlag, 1995.

C. Gutwenger, M. Jünger, S. Leipert, P. Mutzel, M. Percan, and R. Weiskircher. Advances in C-planarity testing of clustered graphs. In Stephen G. Kobourov and Michael T. Goodrich, editors, Proc. Graph Drawing 2002 (GD'02), volume 2528 of LNCS , pages 220-235. Springer-Verlag. 2002.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.