## On Rectangle Visibility Graphs
Bose, Prosenjit and Dean, Alice M. and Hutchinson, Joan P. and Shermer, Thomas
(1997)
Full text not available from this repository. ## AbstractWe study the problem of drawing a graph in the plane so that the vertices of the graph are rectangles that are aligned with the axes, and the edges of the graph are horizontal or vertical lines-of-sight. Such a drawing is usefull, for example, when the vertices of the graph contain information that we wish displayed on the drawing; it is natural to write this information inside the rectangle corresponding to the vertex. We call a graph that can be drawn in this fashion a rectangle-visibility graph, or RVG. Our goal is to find classes of graphs that are RVGs. We obtain several results: 1. For 1<= k <=4, trees are RVGs. 2. Any Graph that can be decomposed into two caterpillar forests is an RVG. 3. Any graph whose vertices of degree four or more form a distance-two independent set is an RVG. 4. Any graph with maximum degree four is an RVG. Our proofs are constructive and yield linear-time layout algorithms.
Repository Staff Only: item control page References |