Dynamic Spectral Layout of Small Worlds

Brandes, Ulrik and Fleischer, Daniel and Puppe, Thomas (2006) Dynamic Spectral Layout of Small Worlds. In: Graph Drawing 13th International Symposium, GD 2005, September 12-14, 2005, Limerick, Ireland , pp. 25-36 (Official URL: http://dx.doi.org/10.1007/11618058_3).

Full text not available from this repository.


Spectral methods are naturally suited for dynamic graph layout, because continuous changes of edge weights yield continuous changes of the layout under very weak assumptions. We discuss some general principles for dynamic graph layout and derive a dynamic spectral layout approach for the animation of small-world models.

Item Type:Conference Paper
Additional Information:10.1007/11618058_3
Classifications:M Methods > M.999 Others
M Methods > M.300 Dynamic / Incremental / Online
ID Code:677

Repository Staff Only: item control page


U. Brandes, M. Eiglsperger, M. Kaufmann, and D. Wagner.: Sktech-driven orthogonal graph drawing. Proc. GD 2002, LNCS 2528, pages 1--11. Springer, 2002.

U. Brandes, V. Kääb, A. Löh, D. Wagner, and T. Willhalm.: Dynamic WWW structures in 3D. Journal of Graph Algorithms and Applications, 4(3):103--114, 2000.

U. Brandes and D. Wagner.: A Bayesian paradigm for dynamic graph layout. Proc. GD 1997, LNCS 1353, pages 236--247. Springer, 1997.

J. Branke.: Dynamic graph drawing. In M. Kaufmann and D. Wagner, editors, Drawing Graphs, LNCS 2025, pages 228--246. Springer, 2001.

S. Bridgeman and R. Tamassia.: Difference metrics for interactive orthogonal graph drawing algorithms. Journal of Graph Algorithms and Applications, 4(3):47--74, 2000.

C. Demestrescu, G. Di Battista, I. Finocchi, G. Liotta, M. Patrignani, and M. Pizzonia.: Infinite trees and the future. In Proc. GD 1999, LNCS 1731, pages 379--391. Springer, 1999.

S. Diehl, C. Görg, and A. Kerren.: Preserving the mental map using forsighted layout. Proc. VisSym 2001. Springer, 2001.

P. Eades, R. F. Cohen, and M. Huang.: Online animated graph drawing for web navigation. Proc. GD 1997, LNCS 1353, pages 330--335. Springer, 1997.

C. Erten, P. J. Harding, S. G. Kobourov, K. Wampler, and G. Yee.: GraphAEL: Graph animations with evolving layouts. Proc. GD 2003, LNCS 2912, pages 98--110. Springer, 2003.

C. Erten, S. G. Kobourov, and C. Pitta.: Intersection-free morphing of planar graphs. Proc. GD 2003, LNCS 2912, pages 320--331. Springer, 2003.

C. Friedrich and P. Eades.: Graph drawing in motion. Journal of Graph Algorithms and Applications, 6(3):353--370, 2002.

C. Friedrich and M. E. Houle.: Graph drawing in motion II. In Proc. GD 2001, LNCS 2265, pages 220--231. Springer, 2001.

G. H. Golub and C. F. van Loan.: Matrix Computations. John Hopkins University Press, 1983.

K. M. Hall.: An r-dimensional quadratic placement algorithm. Management Science, 17(3):219--229, 1970.

Y. Koren.: Drawing graphs by eigenvectors: Theory and practice. Computers and Mathematics with Applications, 2005. To appear.

Y. Koren, L. Carmel, and D. Harel.: Drawing huge graphs by algebraic multigrid optimization. Multiscale Modeling and Simulation, 1(4):645--673, 2003.

K. Misue, P. Eades, W. Lai, and K. Sugiyama.: Layout adjustment and the mental map. Journal of Visual Languages and Computing, 6(2):183--210, 1995.

F. Rellich.: Perturbation Theory of Eigenvalue Problems. Gordon and Breach Science Publishers, 1969.

D. J. Watts and S. H. Strogatz.: Collective dynamics of "small-world" networks. Nature, 393:440--442, 1998.