Interactive Orthogonal Graph Drawing: Algorithms and Bounds

Fößmeier, Ulrich (1998) Interactive Orthogonal Graph Drawing: Algorithms and Bounds. In: Graph Drawing 5th International Symposium, GD '97, September 18-20, 1997, Rome, Italy , pp. 111-123 (Official URL:

Full text not available from this repository.


Incremental graph drawing is a model gaining more and more importance in many applications. We present algorithms that allow insertions of new vertices into an existing drawing without changing the position of the objects drawn so far. We prove bounds for the quality of our drawings and considerably improve on previous bounds. Here the number of bends and the used area are our quality measures. Besides we discuss lower bounds for this problem.

Item Type:Conference Paper
Additional Information:10.1007/3-540-63938-1_55
Classifications:M Methods > M.300 Dynamic / Incremental / Online
G Algorithms and Complexity > G.070 Area / Edge Length
G Algorithms and Complexity > G.210 Bends
P Styles > P.600 Poly-line > P.600.700 Orthogonal
ID Code:72

Repository Staff Only: item control page


Biedl, T.C., New Lower Bounds for Orthogonal Graph Drawings, Proceedings on GD '95 Passau, 28-39, 1995.

Biedl, T.C., Orthogonal Graph Drawing, Algorithms and Lower Bounds, Diploma Thesis TU Berlin, 1995.

Batini, C., E. Nardelli and R. Tamassia, A Layout Algorithm for Data-Flow Diagrams, IEEE Trans. on Software Engineering, Vol. SE-12 (4), 538-546, 1986.

Batini, C., M. Talamo and R. Tamassia, Computer Aided Layout of Entity-Relationship Diagrams, The Journal of Systems snd Software, Vol. 4, 163-173, 1984.

CPLEX optimization, Inc. Using the CPLEX Bye System. CPLEX Optimization, Inc., 1995.

DiBattista G., P. Eades, R. Tamassia and I.G. Tollis, Algorithms for Drawing Graphs: An Annotated Bibliography, Computational Geometry: Theory and Applications, vol. 4, no. 5, 235-282, 1994.

Fößmeier U., Interactive Orthogonal Graph Drawing: Algorithmus and Bounds, Technical Report WSI-97-12, University of Tübingen.

Garg, A., R. Tamassia, On the computational complexity of upward and rectilinear planarity testing, Proceedings of GD '94, Princeton, 286-297, 1994.

Jahrmarkt, F., Knickminimierende Verfahren für interaktives orthogonales Graphenzeichnen, Diplomarbeit Universität Tübingen, 1997 (in German language).

Kramer M.R., J. van Leeuwen, The complexity of wire routing and finding minimum area layouts of arbitrary VLSI circuits, Advances in Computer Research, Vol.2: VLSI Theory, Jai Press, Reading, MA, 129-146, 1992.

Misue, K., P. Eades, W. Lai and K. Sugiyama, Layout Adjustment and the Mental Map, Journal of Visual Languages and Computing, vol. 6, 183-210, 1995.

Papakostas, A, J.M. Six, I.G. Tollis, Experimental and Theoretical Results in Interactive Orthogonal Drawing, Proceedings on GD '96, Berkeley, 371-386, 1996.

Papakostas, A and I.G. Tollis, Issues in Interactive Orthogonal Graph Drawing, Proceedings on GD '95, Passau, 419-430, 1995.

Papakostas, A and I.G. Tollis, Improved Algorithms and Bounds for Orthogonal Drawings, Proceedings on GD '94, Princeton, 40-51, 1994.

Valiant, L.G., Universality considerations in VLSI circuits, IEEE Trans. Comput., C-30, 135-140, 1981.