On Straightening Low-Diameter Unit Trees

Poon, Sheung-Hung (2006) On Straightening Low-Diameter Unit Trees. In: Graph Drawing 13th International Symposium, GD 2005, September 12-14, 2005, Limerick, Ireland , pp. 519-521 (Official URL: http://dx.doi.org/10.1007/11618058_51).

Full text not available from this repository.

Abstract

A polygonal chain is a sequence of consecutively joined edges embedded in space. A k-chain is a chain of k edges. A polygonal tree is a set of edges joined into a tree structure embedded in space. A unit tree is a tree with only edges of unit lenght. A chain or a tree is simple if non-adjacent edges do not intersect. ...

Item Type:Conference Poster
Additional Information:10.1007/11618058_51
Classifications:M Methods > M.900 Tree
ID Code:731

Repository Staff Only: item control page

References

H. Alt, C. Knauer, G. Rote, and S. Whitesides. The Complexity of (Un)folding. Proc. 19th ACM Symp. on Comput. Geom. (SOCG), 164-170, 2003.

T. Biedl, E. Demaine, M. Demaine, S. Lazard, A. Lubiw, J. O'Rourke, S. Robbins, I. Streinu, G. Toussaint, and S. Whitesides. A Note on Reconfiguring Tree Linkages: Tree can Lock. Disc. Appl. Math., 117:1-3, 293-297, 2002.

R. Cocan and J. O'Rourke. Polygonal Chains Cannot Lock in 4D. Comput. Geom.: Theory & Appl., 20, 105-129, 2001.

R. Connelly, E. D. Demaine, and G. Rote. Straightening Polygonal Arcs and Convexifying Polygonal Cycles. Disc. & Comput. Geom., 30:2, 205-239, 2003.

I. Streinu. A combinatorial approach for planar non-colliding robot arm motion planning. Proc. 41st ACM Symp. on Found. of Comp. Sci. (FOCS), 443-453, 2000.