Upright-Quad Drawing of st-Planar Learning Spaces

Eppstein, David (2007) Upright-Quad Drawing of st-Planar Learning Spaces. In: Graph Drawing 14th International Symposium, GD 2006, September 18-20, 2006, Karlsruhe, Germany , pp. 282-293 (Official URL: http://dx.doi.org/10.1007/978-3-540-70904-6_28).

Full text not available from this repository.

Abstract

We consider graph drawing algorithms for learning spaces, a type of $st$-oriented partial cube derived from antimatroids and used to model states of knowledge of students. We show how to draw any st-planar learning space so all internal faces are convex quadrilaterals with the bottom side horizontal and the left side vertical, with one minimal and one maximal vertex. Conversely, every such drawing represents an st-planar learning space. We also describe connections between these graphs and arrangements of translates of a quadrant.

Item Type:Conference Paper
Additional Information:10.1007/978-3-540-70904-6_28
Classifications:Z Theory > Z.500 Representations
M Methods > M.999 Others
ID Code:783

Repository Staff Only: item control page

References

E. Cosyn and H. Uzun. Axioms for learning spaces. To be submitted to Journal of Mathematical Psychology, 2005.

G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

G. Di Battista, R. Tamassia, and I. G. Tollis. Area requirement and symmetry display of planar upward drawings. Discrete Comput. Geom. 7:381-401, 1992.

J.-P. Doignon and J.-C. Falmagne. Knowledge Spaces. Springer-Verlag, 1999.

D. Eppstein. Algorithms for drawing media. Proc. 12th Int. Symp. Graph Drawing (GD 2004), pp. 173-183. Springer-Verlag, Lecture Notes in Computer Science 3383, 2004, arXiv:cs.DS/0406020.

D. Eppstein. Cubic partial cubes from simplicial arrangements. arXiv.org, October 2005, arXiv:math.CO/0510263.

D. Eppstein. The lattice dimension of a graph. Eur. J. Combinatorics 26(5):585-592, July 2005, http://dx.doi.org/10.1016/j.ejc.2004.05.001, arXiv:cs.DS/0402028.

D. Eppstein. What is the dimension of the set of partitions? Unpublished web document, http://11011110.livejournal.com/6402.html, 2006.

D. Eppstein, M. T. Goodrich, and J. Y. Meng. Delta-confluent drawings. Proc. 13th Int. Symp. Graph Drawing (GD 2005), pp. 165-176. Springer-Verlag, Lecture Notes in Computer Science 3843, 2006, arXiv:cs.CG/0510024.

H. de Fraysseix and P. Ossona de Mendez. Stretching of Jordan arc contact systems. Proc. 11th Int. Symp. Graph Drawing (GD 2003), pp. 71-85. Springer-Verlag, Lecture Notes in Computer Science 2912, 2003.

Y.-F. Hsu, J.-C. Falmagne, and M. Regenwetter. The tuning in-and-out model: a random walk and its application to presidential election surveys. Submitted, 2002.

W. Imrich and S. Klavzar. Product Graphs. John Wiley Sons, 2000.

B. Korte, L. Lovasz, and R. Schrader. Greedoids. Algorithms and Combinatorics 4. Springer-Verlag, 1991.

S. V. Ovchinnikov. Media theory: representations and examples. To appear in Discrete Applied Mathematics, arXiv:math.CO/0512282.