Radial Drawings of Graphs: Geometric Constraints and Trade-offs

Di Giacomo, Emilio and Didimo, Walter and Liotta, Giuseppe (2007) Radial Drawings of Graphs: Geometric Constraints and Trade-offs. In: Graph Drawing 14th International Symposium, GD 2006, September 18-20, 2006, Karlsruhe, Germany , pp. 355-366 (Official URL: http://dx.doi.org/10.1007/978-3-540-70904-6_34).

Full text not available from this repository.


This paper studies how to compute radial drawings of graphs by taking into account additional geometric constraints which correspond to typical aesthetic and semantic requirements for the visualization. The following requirements are considered: vertex centrality, edge crossings, curve complexity, and vertex radial distribution. Trade-offs among these requirements and efficient drawing algorithms are presented.

Item Type:Conference Paper
Additional Information:10.1007/978-3-540-70904-6_34
Classifications:G Algorithms and Complexity > G.560 Geometry
P Styles > P.660 Radial
ID Code:790

Repository Staff Only: item control page


C. Bachmaier, F. J. Brandenburg, and M. Forster. Track planarity testing and embedding. In Proc. of SOFSEM'04, volume 2, pages 3-17, 2004.

C. Bachmaier, F. J. Brandenburg, and M. Forster. Radial level planarity testing and embedding in linear time. JGAA, 9(1):53-97, 2005.

U. Brandes, P. Kenis, and D. Wagner. Communicating centrality in policy network drawings. IEEE Trans. on Vis. and Comp. Graph., 9(2):241-253, 2003.

U. Brandes and D. Wagner. Visone - analysis and visualization of social networks. In M. Jünger and P. Mutzel, editors, Graph Drawing Software, Springer Verlag, pages 321-340. 2004.

H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combinatorica, 10:41-51, 1990.

G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall, 1999.

E. Di Giacomo, W. Didimo, G. Liotta, and H. Meijer. Computing radial drawings on the minimum number of circles. JGAA, 9(3):365-389, 2005.

E. Di Giacomo, W. Didimo, G. Liotta, and S. K. Wismath. Curve-constrained drawings of planar graphs. Computational Geometry, 30:1-23, 2005.

M. Dodge and R. Kitchin. Atlas of Cyberspace. Addison Wesley, 2001.

S. N. Dorogstev and J. F. F. Mendes. Evolution of Networks, From Biological Nets to the Internet and WWW. Oxford University Press, 2003.

M. Kaufmann and D. Wagner, editors. Drawing Graphs, volume 2025 of LNCS. Springer, 2001.

M. Kaufmann and R. Wiese. Embedding vertices at points: Few bends suffice for planar graphs. Journal of Graph Algorithms and Applications, 6(1):115-129, 2002.J. Pach and R. Wenger. Embedding planar graphs at fixed vertex locations. Graph and Combinatorics, 17:717-728, 2001.

H. C. Purchase. Which aesthetic has the greatest effect on human understanding? In Proc. GD '97, volume 1353 of LNCS, pages 248-261. Springer, 1998.

H. C. Purchase. Effective information visualisation: a study of graph drawing aesthetics and algorithms. Interacting with Computers, 13(2):147-162, 2000.

K. Sugiyama. Graph Drawing and Applications. World Scientific, 2002.

R. Tamassia. Advances in the theory and practice of graph drawing. Theoretical Computer Science, 217(2):235-254, 1999.

R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and readability of diagrams. IEEE Trans. Syst., Man and Cyber., SMC-18(1):61-79, 1988.