THE DULMAGE-MENDELSOHN PRECONDITIONING OF DECAY CHAINS

Thomas, Gerald F. (2007) THE DULMAGE-MENDELSOHN PRECONDITIONING OF DECAY CHAINS. [Preprint]

This is the latest version of this item.

[img] PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
258Kb

Abstract

The uses of the Dulmage-Mendelsohn triangularization of a radioactive decay chain's bipartite graph in the rapid computation of its pseudospectra, its exponentiation, and the numerical solution of its Bateman system of depletion equations are briefly discussed.

Item Type:Preprint
Keywords:Dulmage-Mendelsohn; preconditioning; decay chain; pseudospectra; exponentiation; Bateman system
Classifications:M Methods > M.001 General
J Applications > J.001 General
ID Code:809

Available Versions of this Item

Repository Staff Only: item control page

References

H. Bateman, The solution of a system of dierential equations occurring in the theory of radioactive transformations, Proc. Camb. Phil. Soc., 14, 423-427, 1910.

M. Benedict, T.H. Pigford, and H.W. Levi, Nuclear Chemical Engineering, 2nd. edition. McGraw-Hill, NY, 1981.

G.L. Catchen, Application of the radioactive equations of growth and decay to geochronological models and explicit solution of the equations by Laplace transformation, Isot. Geosci. 2, 181-195, 1984.

J. Magill and J. Galy, Radioactivity, Radionuclides, Radiation. Springer-Verlag, Berlin, 2005.

K.F. Eckerman, R.J. Westfall, J.C. Ryman , M. Cristy, Availability of nuclear decay data in electronic form, including beta spectra not previously published, Health Phys. 67, 338-345, 1994.

R.B. Firestone, V.S. Shirley, C.M. Baglin, S.Y. Chu, and J. Zipkin, Table of Isotopes, 8th edition. Wiley, NY, 1996.

ICRP Radionuclide Transformations: Energy and intensity of emissions, ICRP Publication 38, 1983.

M.G. Stabin and C.Q.P.L. da Luz, New decay data for internal and external dose assessment. Health Phys 83, 471-475, 2002.

D.A. Weber, K.F. Eckerman, L.T. Dillman, and J.C. Ryman, MIRD:Radionuclide data and decay schemes. Society of Nuclear Medicine, NY, 1989.

IAEA NDC, available at http://www-nds.iaea.org/.

US NNDC, available at http://www.nndc.bnl.gov/.

RADAR, available at http://www.doseinfo-radar.com/RADARDecay.html.

A.L. Dulmage and N.S. Mendelsohn, Coverings of bipartite graphs, Can. Jl. Math. 10, 517-534, 1958; A structure theory of bipartite graphs of nite exterior, Trans. Roy. Soc. Can. Sec. 3 53, 1-13, 1959.

W.K. Chen, Graph Theory and Its Engineering Applications. World Scientic, Singapore, 1997.

A.C. Brown, Theory of Chemical Combination. MD Thesis, University of Edinburgh, UK, presented 1861 and printed 1879.

A. Cayley, On the mathematical theory of isomers, Phil. Mag. 47, 444-446, 1874.

J.J. Sylvester, On an application of the new atomic theory to the graphical representation of the invariants and covariants of binary quantics, with three appendices, Amer. J. Math. 1, 64-104, 1878.

R.A. Horn and C.R. Johnson, Matrix Analysis. Cambridge Univ. Press, UK, 1985.

G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd edition. Johns Hopkins Univ. Press, Baltimore, MD, 1996.

A. Pothen and C-J. Fan, Computing the block triangular form of a sparse matrix, ACM Trans. Math. Softw. 16, 303-324, 1990.

J.R. Gilbert, C. Moler, and R. Schrieber, Sparse matrices in MATLAB: Design and implementation, SIAM Jl. Matrix Anal. Applic. 13, 333-356, 1992.

I.S. Du, Algorithm 575: Permutations for a zero-free diagonal [F1], ACM Trans. Math. Softw. 7, 387-390, 1981.

L. Qiu, B. Bernhardsson, A. Rantzer, E.J. Davison, P.M. Young, and J.C. Doyle, A formula for computation of the real stability radius, Automatica 31, 879-890, 1995.

J. Sreedhar, P. van Dooren, and A.L. Tits, "A fast algorithm to compute the real structured stability radius" in Proc. Conf. Centennial Hurwitz on Stability Theory, Ticino, Switzerland, 1995.

C. Davis, Explicit functional calculus, Linear Algebra Applic. 6, 193-199, 1973.

J. Descloux, Bounds for the spectral norm of functions of matrices, Numer. Math. 15, 185-190, 1963.

F. Chaitin-Chatelin and V. Fraysse, Lectures on Finite Precision Computations. SIAM, Philadelphia, 1996.

S.K. Godunov, "Spectral portraits of matrices and criteria for spectrum dichotomy" in J. Herzberger and L. Atanossova (eds.), The Proceedings of SCAN '91. International symposium on computer arithmetic and scientic computation, Oldenburg, Germany. North Holland, Amsterdam, 1992.

L.N. Trefethen and M. Embree Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators Princeton Univ. Press, Princeton, NJ, 2005.

G.F. Thomas, Sensivity of Radioactive Decay Chains to Uncertainities in Their Data, in preparation.

G.F. Thomas, Asymptotic States of Actinide Decay Chains, in preparation.

M.J. Bell, ORIGEN - The ORNL isotope generation and depletion code. Report ORNL-4628, Oak Ridge National Laboratory, TN, 1973.

A.G. Cro, ORIGIN2: A versatile computer code for calculating the nuclide compositions and characteristics of nuclear materials, Nucl. Technol. 62, 335-352, 1983.

M.D. DeHart and O.W. Hermann, An Extension of the Validation of SCALE (SAS2H) Isotopic Predictions, Report ORNL/TM-13317, Oak Ridge National Laboratory, TN, 1996.

O.W. Hermann, S.M. Bowman, M.C. Brady, and C.V. Parks, Validation of the SCALE System for PWR Spent Fuel Isotopic Composition Analyses, Report ORNL/TM-12667, Oak Ridge National Laboratory, TN, 1995.

G.F. Thomas and D. Barber, Stiffness in radioactive decay chains, Ann. Nucl. Energy 21, 309-320, 1994.

M. Hochbruck, C. Lubich, and H. Selhofer, Exponential integrators for large systems of dierential equations, SIAM J. Sci. Comput. 19, 1552-1574, 1998.

W. Hundsdorfer and J.G. Verwer Numerical Solution of Time-Dependent Advection-Diusion-Reaction Equations. Springer-Verlag, Berlin, 2007.

O.E. Livne and G.H. Golub, Scaling by binormalization, Numer. Alg. 35, 97-121, 2004.

T. Schmelzer and L.N. Trefethen, Evaluating matrix functions for exponential integrators via Caratheodry-Fejer approximation and contour integrals, Numerical Analysis Group Research Report NA-06/20, available at ftp://ftp.comlab.ox.ac.uk/pub/Documents/techreports/NA-06-20.pdf, 2006.

L.N. Trefethen, J.A.C. Weideman, and T. Schmelzer, Talbot quadratures and rational approximations, BIT Numerical Mathematics 46, 653-670, 2006.

H. Bouwer, Simple derivation of the retardation equation and application to preferential flow and macrodispersion, Ground Water GRWAAP, 29, 41-46, 1991.