Drawing (Complete) Binary Tanglegrams

Buchin, Kevin and Buchin, Maike and Byrka, Jaroslaw and Nöllenburg, Martin and Okamoto, Yoshio and Silveira, Rodrigo I. and Wolff, Alexander (2009) Drawing (Complete) Binary Tanglegrams. In: Graph Drawing 16th International Symposium, GD 2008, September 21- 24, 2008, Heraklion, Crete, Greece , pp. 324-335 (Official URL: http://dx.doi.org/10.1007/978-3-642-00219-9_32).

Full text not available from this repository.


A binary tanglegram is a pair S, T of binary trees whose leaf sets are in one-to-one correspondence; matching leaves are connected by inter-tree edges. For applications, for example in phylogenetics, it is essential that both trees are drawn without edge crossings and that the inter-tree edges have as few crossings as possible. It is known that finding a drawing with the minimum number of crossings is NP-hard and that the problem is fixed-parameter tractable with respect to that number. We prove that under the Unique Games Conjecture there is no constant-factor approximation for general binary trees. We show thatthe problem is hard even if both trees are complete binary trees. For this case we give an O(n3 )-time 2-approximation and a new and simple fixed-parameter algorithm. We show that the maximization version of the dual problem for general binary trees can be reduced to a version of MaxCut for which the algorithm of Goemans and Williamson yields a 0.878-approximation.

Item Type:Conference Paper
Additional Information:10.1007/978-3-642-00219-9_32
Classifications:G Algorithms and Complexity > G.420 Crossings
P Styles > P.999 Others
ID Code:889

Repository Staff Only: item control page


Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-source digraphs. SIAM J. Comput. 27(1), 132–169 (1998)

Buchin, K., Buchin, M.,Byrka,J., Nöllenburg, M.,Okamoto,Y., Silveira, R.I., Wolff,A.: Drawing (complete) binary tanglegrams: Hardness, approximation,fixedparameter tractability. Arxiv report(2008) http://arxiv.org/abs/0806.0920

DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Zhang, L.: On distances between phylogenetic trees. In: Proc. 18th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA’97). pp. 427–436 (1997)

Dujmovic, V., Fernau, H., Kaufmann, M.: Fixed parameter algorithms for onec sided crossing minimization revisited. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 332–344. Springer, Heidelberg (2004)

Dwyer, T., Schreiber, F.: Optimal leaf ordering for two and a half dimensional phylogenetic tree visualization. In: Proc. Australasian Sympos. Inform. Visual. (InVis.au’04). CRPIT, vol. 35, pp. 109–115. Australian Comput. Soc. (2004)

Eades, P., Wormald, N.: Edge crossings in drawings of bipartite graphs. Algorithmica 10, 379–403 (1994)

Fernau, H., Kaufmann, M., Poths, M.: Comparing trees via crossing minimization. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 457–469. Springer, Heidelberg (2005)

Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

Hafner, M.S., Sudman, P.D., Villablanca, F.X., Spradling, T.A., Demastes, J.W., Nadler, S.A.: Disparate rates of molecular evolution in cospeciating hosts and parasites. Science 265, 1087–1090 (1994)

Holten, D.,van Wijk, J.J.: Visual comparison of hierarchically organized data. In: Proc. 10th Eurographics/IEEE-VGTC Sympos. Visualization (EuroVis’08). pp. 759–766 (2008)

Khot,S.: On the power of unique 2-prover 1-round games. In: Proc. 34th Annu. ACM Sympos. Theory Comput. (STOC’02). pp. 767–775 (2002)

Khot, S.,Vishnoi, N.K.: The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into l1 . In: Proc. 46th Annu. IEEE Sympos. Foundat. Comput. Sci. (FOCS’05). pp. 53–62 (2005)

Lozano, A., Pinter, R.Y., Rokhlenko, O., Valiente, G., Ziv-Ukelson, M.: Seeded tree alignment and planar tanglegram layout. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS, vol. 4645, pp. 98–110. Springer, Heidelberg (2007)

Nagamochi, H.:An improved bound on the one-sided minimum crossing number in two-layered drawings. Discrete Comput. Geom. 33(4), 565–591 (2005)

Nöllenburg, M., Holten,D., Völker, M., Wolff, A.: Drawing binary tanglegrams: An experimental evaluation. Arxiv report (2008), http://arxiv.org/abs/0806.0928

Page, R.D.M. (ed.): Tangled Trees: Phylogeny, Cospeciation, and Coevolution. University of Chicago Press (2002)

Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Transactions on Systems, Man, and Cybernetics 11(2), 109–125 (1981)