## 3-Regular non 3-Edge-Colorable Graphs with Polyhedral Embeddings in Orientable Surfaces
Kochol, Martin
(2009)
Full text not available from this repository. ## AbstractThe Four Color Theorem is equivalent with its dual form stating that each 2-edge-connected 3-regular planar graph is 3-edgecolorable. In 1968, Grünbaum conjectured that similar property holds true for any orientable surface, namely that each 3-regular graph with a polyhedral embedding in an orientable surface has a 3-edge-coloring. Note that an embedding of a graph in a surface is called polyhedral if its geometric dual has no multiple edges and loops. We present a negative solution of this conjecture, showing that for each orientable surface of genus at least 5, there exists a 3-regular non 3-edge-colorable graph with a polyhedral embedding in the surface.
Repository Staff Only: item control page References |